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Scilla (short for Smart Contract Intermediate-Level LAnguage) is an intermediate-level smart contract language being
developed for the Zilliqa blockchain. Scilla is designed as a principled language with smart contract safety in mind.

Scilla imposes a structure on smart contracts that will make applications less vulnerable to attacks by eliminating
certain known vulnerabilities directly at the language-level. Furthermore, the principled structure of Scilla will make
applications inherently more secure and amenable to formal verification.

The language is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq
proof assistant — a state-of-the art tool for mechanized proofs about properties of programs. Coq is based on advanced
dependently-typed theory and features a large set of mathematical libraries. It has been successfully applied previously
to implement certified (i.e., fully mechanically verified) compilers, concurrent and distributed applications, including
blockchains among others.

Zilliqa — the underlying blockchain platform on which Scilla contracts are run — has been designed to be scalable. It
employs the idea of sharding to validate transactions in parallel. Zilliqa has an intrinsic token named Zilling (ZIL for
short) that are required to run smart contracts on Zilliqa.

Contents 1
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CHAPTER 1

Development Status

Scilla is under active research and development and hence parts of the specification described in this document are
subject to change. Scilla currently comes with an interpreter binary that has been integrated into two Scilla-specific
web-based IDEs. Trying out Scilla presents the features of the two IDEs.
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CHAPTER 2

Resources

There are several resources to learn about Scilla and Zilliqa. Some of these are given below:

Scilla

• Scilla Design Paper

• Scilla Slides

• Scilla Language Grammar

• Scilla Design Story Piece by Piece: Part 1 (Why do we need a new language?)

Zilliqa

• The Zilliqa Design Story Piece by Piece: Part 1 (Network Sharding)

• The Zilliqa Design Story Piece by Piece: Part 2 (Consensus Protocol)

• The Zilliqa Design Story Piece by Piece: Part 3 (Making Consensus Efficient)

• Technical Whitepaper

• The Not-So-Short Zilliqa Technical FAQ

5

https://ilyasergey.net/papers/scilla-oopsla19.pdf
https://drive.google.com/file/d/10gIef8jeoQ2h9kYInvU3s0i5B6Z9syGB/view
https://docs.zilliqa.com/scilla-grammar.pdf
https://blog.zilliqa.com/scilla-design-story-piece-by-piece-part-1-why-do-we-need-a-new-language-27d5f14ae661
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/the-zilliqa-design-story-piece-by-piece-part-2-consensus-protocol-e38f6bf566e3
https://blog.zilliqa.com/the-zilliqa-design-story-piece-by-piece-part-3-making-consensus-efficient-7a9c569a8f0e
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/techfaq.pdf
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CHAPTER 3

Contents

3.1 Scilla Design Principles

Smart contracts provide a mechanism to express computations on a blockchain, i.e., a decentralized Byzantine-fault
tolerant distributed ledger. With the advent of smart contracts, it has become possible to build what is referred to as
decentralized applications or Dapps for short. These applications have their program and business logic coded in the
form of a smart contract that can be run on a decentralized blockchain network.

Running applications on a decentralized network eliminates the need of a trusted centralized party or a server typical
of other applications. These features of smart contracts have become so popular today that they now drive real-world
economies through applications such as crowdfunding, games, decentralized exchanges, payment processors among
many others.

However, experience over the last few years has shown that implemented operational semantics of smart contract
languages admit rather subtle behaviour that diverge from the intuitive understanding of the language in the minds of
contract developers. This divergence has led to some of the largest attacks on smart contracts, e.g., the attack on the
DAO contract and Parity wallet among others. The problem becomes even more severe because smart contracts cannot
directly be updated due to the immutable nature of blockchains. It is hence crucial to ensure that smart contracts that
get deployed are safe to run.

Formal methods such as verification and model checking have proven to be effective in improving the safety of soft-
ware systems in other disciplines and hence it is natural to explore their applicability in improving the readability and
safety of smart contracts. Moreover, with formal methods, it becomes possible to produce rigorous guarantees about
the behavior of a contract.

Applying formal verification tools with existing languages such as Solidity however is not an easy task because of the
extreme expressivity typical of a Turing-complete language. Indeed, there is a trade-off between making a language
simpler to understand and amenable to formal verification, and making it more expressive. For instance, Bitcoin’s
scripting language occupies the simpler end of the spectrum and does not handle stateful-objects. On the expressive
side of the spectrum is a Turing-complete language such as Solidity.

Scilla is a new (intermediate-level) smart contract language that has been designed to achieve both expressivity and
tractability at the same time, while enabling formal reasoning about contract behavior by adopting certain fundamental
design principles as described below:

7
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Separation Between Computation and Communication

Contracts in Scilla are structured as communicating automata: every in-contract computation (e.g., changing its bal-
ance or computing a value of a function) is implemented as a standalone, atomic transition, i.e., without involving
any other parties. Whenever such involvement is required (e.g., for transferring control to another party), a transition
would end, with an explicit communication, by means of sending and receiving messages. The automata-based struc-
ture makes it possible to disentangle the contract-specific effects (i.e., transitions) from blockchain-wide interactions
(i.e., sending/receiving funds and messages), thus providing a clean reasoning mechanism about contract composition
and invariants.

Separation Between Effectful and Pure Computations

Any in-contract computation happening within a transition has to terminate, and have a predictable effect on the state
of the contract and the execution. In order to achieve this, Scilla draws inspiration from functional programming with
effects in distinguishing between pure expressions (e.g., expressions with primitive data types and maps), impure local
state manipulations (i.e., reading/writing into contract fields), and blockchain reflection (e.g., reading current block
number). By carefully designing semantics of interaction between pure and impure language aspects, Scilla ensures
a number of foundational properties about contract transitions, such as progress and type preservation, while also
making them amenable to interactive and/or automatic verification with standalone tools.

Separation Between Invocation and Continuation

Structuring contracts as communicating automata provides a computational model, which only allows tail-calls, i.e.,
every call to an external function (i.e., another contract) has to be done as the absolutely last instruction.

3.2 Trying out Scilla

Scilla is under active development. You can try out Scilla in the online IDE.

3.2.1 Savant IDE

Neo Savant IDE is a web-based development environment that allows you to interact with the simulated testnet envi-
ronment, the live developer testnet, and the live mainnet. It is optimized for use in Chrome Web Browser. Neo Savant
IDE allows you to import accounts from external wallets like Ledger or keystore files.

The IDE automatically request the faucets to disburse testnet $ZIL to you when the wallet is successfully imported.
On the simulated testnet environment, you will receive 10,000 $ZIL. While on the developer testnet, you will receive
300 $ZIL. There are no faucets for the live mainnet.

The Neo Savant IDE can act as a staging environment, before doing automated script testing with tools like Isolated
Server and Zilliqa-JS. To try out the Neo Savant IDE, users need to visit Neo Savant IDE.

3.2.2 Example Contracts

Savant IDE comes with the following sample smart contracts written in Scilla:

• HelloWorld : It is a simple contract that allows a specified account denoted owner to set a welcome message.
Setting the welcome message is done via setHello (msg: String). The contract also provides an
interface getHello() to allow any account to be returned with the welcome message when called.

• BookStore : A demonstration of a CRUD app. Only owner of the contract can add members. All members
will have read/write access capability to create OR update books in the inventory with book title, author, and
bookID.

8 Chapter 3. Contents
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• CrowdFunding : Crowdfunding implements a Kickstarter-style campaign where users can donate funds to the
contract using Donate(). If the campaign is successful, i.e., enough money is raised within a given time
period, the raised money can be sent to a predefined account owner via GetFunds(). Else, if the campaign
fails, then contributors can take back their donations via the transition ClaimBack().

• Auction : A simple open auction contract where bidders can make their bid using Bid(), and the highest
and winning bid amount goes to a predefined account. Bidders who don’t win can take back their bid using
the transition Withdraw(). The organizer of the auction can claim the highest bid by invoking the transition
AuctionEnd().

• FungibleToken : ZRC-2 Fungible token standard contract for creating fungible digital assets such as stable-
coins, utility tokens, and loyalty points.

• NonFungible Token : ZRC-1 Non-fungible token standard contract for creating unique digital assets such as
digital collectibles, music records, arts, and domains.

• ZilGame : A two-player game where the goal is to find the closest preimage of a given SHA256 digest
(puzzle). More formally, given a digest d, and two values x and y, x is said to be a closer preimage than
y of d if Distance(SHA-256(x), d) < Distance(SHA-256(y), d), for some Distance function. The game is played
in two phases. In the first phase, players submit their hash, i.e., SHA-256(x) and SHA-256(y) using the transition
Play(guess: ByStr32). Once the first player has submitted her hash, the second player has a bounded
time to submit her hash. If the second player does not submit her hash within the stipulated time, then the first
player may become the winner. In the second phase, players have to submit the corresponding values x or y
using the transition ClaimReward(solution: Int128). The player submitting the closest preimage is
declared the winner and wins a reward. The contract also provides a transition Withdraw () to recover funds
and send to a specified owner in case no player plays the game.

• SchnorrTest : A sample contract to test the generation of a Schnorr public/private key pairs, signing of a msg
with the private keys, and verification of the signature.

• ECDSATest : A sample contract to test the generation of a ECDSA public/private keypairs, signing of a message
with the private keys, and verification of the signature.

3.3 Scilla by Example

3.3.1 HelloWorld

We start off by writing a classical HelloWorld.scilla contract with the following specification:

• It should have an immutable contract parameter owner to be initialized by the creator of the contract. The pa-
rameter is immutable in the sense that once initialized during contract deployment, its value cannot be changed.
owner will be of type ByStr20 (a hexadecimal Byte String representing a 20 byte address).

• It should have a mutable field welcome_msg of type String initialized to "". Mutability here refers to the
possibility of modifying the value of a variable even after the contract has been deployed.

• The owner and only her should be able to modify welcome_msg through an interface setHello. The
interface takes a msg (of type String) as input and allows the owner to set the value of welcome_msg to
msg.

• It should have an interface getHello that welcomes any caller with welcome_msg. getHello will not
take any input.

3.3. Scilla by Example 9
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Defining a Contract, its Immutable Parameters and Mutable Fields

A contract is declared using the contract keyword that starts the scope of the contract. The keyword is followed
by the name of the contract which will be HelloWorld in our example. So, the following code fragment declares a
HelloWorld contract.

contract HelloWorld

Note: In the current implementation, a Scilla contract can only contain a single contract declaration and hence any
code that follows the contract keyword is part of the contract declaration. In other words, there is no explicit
keyword to declare the end of the contract definition.

A contract declaration is followed by the declaration of its immutable parameters, the scope of which is defined by ().
Each immutable parameter is declared in the following way: vname: vtype, where vname is the parameter name
and vtype is the parameter type. Immutable parameters are separated by ,. As per the specification, the contract will
have only one immutable parameter owner of type ByStr20 and hence the following code fragment.

(owner: ByStr20)

Mutable fields in a contract are declared through keyword field. Each mutable field is declared in the following way:
field vname : vtype = init_val, where vname is the field name, vtype is its type and init_val is
the value to which the field has to be initialized. The HelloWorld contract has one mutable field welcome_msg
of type String initialized to "". This yields the following code fragment:

field welcome_msg : String = ""

At this stage, our HelloWorld.scilla contract will have the following form that includes the contract name, its
immutable parameters and mutable fields:

contract HelloWorld
(owner: ByStr20)

field welcome_msg : String = ""

Defining Interfaces aka Transitions

Interfaces like setHello are referred to as transitions in Scilla. Transitions are similar to functions or methods in
other languages. There is an important difference, however, most languages allow their functions or methods to be
“interrupted” by a thread running in parallel, but Scilla won’t let a transition to be interrupted ensuring there is no
so-called reentrancy issues.

Note: The term transition comes from the underlying computation model in Scilla which follows a communicating
automaton. A contract in Scilla is an automaton with some state. The state of an automaton can be changed using a
transition that takes a previous state and an input and yields a new state. Check the wikipedia entry to read more about
transition systems.

A transition is declared using the keyword transition. The end of a transition scope is declared using the keyword
end. The transition keyword is followed by the transition name, which is setHello for our example. Then
follows the input parameters within (). Each input parameter is separated by a , and is declared in the following
format: vname : vtype. According to the specification, setHello takes only one parameter of name msg of
type String. This yields the following code fragment:

10 Chapter 3. Contents
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transition setHello (msg : String)

What follows the transition signature is the body of the transition. Code for the first transition setHello (msg :
String) to set welcome_msg is given below:

1 transition setHello (msg : String)
2 is_owner = builtin eq owner _sender;
3 match is_owner with
4 | False =>
5 e = {_eventname : "setHello"; code : not_owner_code};
6 event e
7 | True =>
8 welcome_msg := msg;
9 e = {_eventname : "setHello"; code : set_hello_code};

10 event e
11 end
12 end

At first, the caller of the transition is checked against the owner using the instruction builtin eq owner
_sender in Line 2. In order to compare two addresses, we are using the function eq defined as a builtin
operator. The operator returns a Boolean value True or False.

Note: Scilla internally defines some variables that have special semantics. These special variables are often prefixed
by _. For instance, _sender in Scilla refers to the account address that called the current contract.

Depending on the output of the comparison, the transition takes a different path declared using pattern matching, the
syntax of which is given in the fragment below.

match expr with
| pattern_1 => expr_1
| pattern_2 => expr_2
end

The above code checks whether expr evaluates to a value that matches pattern_1 or pattern_2. If expr
evaluates to a value matching pattern_1, then the next expression to be evaluated will be expr_1. Otherwise, if
expr evaluates to a value matching pattern_2, then the next expression to be evaluated will be expr_2.

Hence, the following code block implements an if-then-else instruction:

match expr with
| True => expr_1
| False => expr_2
end

The Caller is Not the Owner

In case the caller is different from owner, the transition takes the False branch and the contract emits an event using
the instruction event.

An event is a signal that gets stored on the blockchain for everyone to see. If a user uses a client application to invoke
a transition on a contract, the client application can listen for events that the contract may emit, and alert the user.

More concretely, the output event in this case is:

3.3. Scilla by Example 11
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e = {_eventname : "setHello"; code : not_owner_code};

An event is comprised of a number of vname : value pairs delimited by ; inside a pair of curly braces {}. An
event must contain the compulsory field _eventname, and may contain other fields such as the code field in the
example above.

Note: In our example we have chosen to name the event after the transition that emits the event, but any name can
be chosen. However, it is recommended that you name the events in a way that makes it easy to see which part of the
code emitted the event.

The Caller is the Owner

In case the caller is owner, the contract allows the caller to set the value of the mutable field welcome_msg to the
input parameter msg. This is done through the following instruction:

welcome_msg := msg;

Note: Writing to a mutable field is done using the operator :=.

And as in the previous case, the contract then emits an event with the code set_hello_code.

Libraries

A Scilla contract may come with some helper libraries that declare purely functional components of a contract,
i.e., components with no state manipulation. A library is declared in the preamble of a contract using the keyword
library followed by the name of the library. In our current example a library declaration would look as follows:

library HelloWorld

The library may include utility functions and program constants using the let ident = expr construct. In our
example the library will only include the definition of error codes:

let not_owner_code = Uint32 1
let set_hello_code = Uint32 2

At this stage, our contract fragment will have the following form:

library HelloWorld

let not_owner_code = Uint32 1
let set_hello_code = Uint32 2

contract HelloWorld
(owner: ByStr20)

field welcome_msg : String = ""

transition setHello (msg : String)
is_owner = builtin eq owner _sender;

(continues on next page)

12 Chapter 3. Contents
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(continued from previous page)

match is_owner with
| False =>

e = {_eventname : "setHello"; code : not_owner_code};
event e

| True =>
welcome_msg := msg;
e = {_eventname : "setHello"; code : set_hello_code};
event e

end
end

Adding Another Transition

We may now add the second transition getHello() that allows client applications to know what the welcome_msg
is. The declaration is similar to setHello (msg : String) except that getHello() does not take a param-
eter.

transition getHello ()
r <- welcome_msg;
e = {_eventname: "getHello"; msg: r};
event e

end

Note: Reading from a local mutable field, i.e., a field defined in the current contract, is done using the operator <-.

In the getHello() transition, we will first read from a mutable field, and then we construct and emit the event.

Scilla Version

Once a contract has been deployed on the network, it cannot be changed. It is therefore necessary to specify which
version of Scilla the contract is written in, so as to ensure that the behaviour of the contract does not change even if
changes are made to the Scilla specification.

The Scilla version of the contract is declared using the keyword scilla_version:

scilla_version 0

The version declaration must appear before any library or contract code.

Putting it All Together

The complete contract that implements the desired specification is given below, where we have added comments using
the (* *) construct:

(* HelloWorld contract *)

(***************************************************)
(* Scilla version *)
(***************************************************)

scilla_version 0

(continues on next page)

3.3. Scilla by Example 13
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(continued from previous page)

(***************************************************)
(* Associated library *)
(***************************************************)
library HelloWorld

let not_owner_code = Uint32 1
let set_hello_code = Uint32 2

(***************************************************)
(* The contract definition *)
(***************************************************)

contract HelloWorld
(owner: ByStr20)

field welcome_msg : String = ""

transition setHello (msg : String)
is_owner = builtin eq owner _sender;
match is_owner with
| False =>
e = {_eventname : "setHello"; code : not_owner_code};
event e

| True =>
welcome_msg := msg;
e = {_eventname : "setHello"; code : set_hello_code};
event e

end
end

transition getHello ()
r <- welcome_msg;
e = {_eventname: "getHello"; msg: r};
event e

end

3.3.2 A Second Example: Crowdfunding

In this section, we present a slightly more involved contract that runs a crowdfunding campaign. In a crowdfunding
campaign, a project owner wishes to raise funds through donations from the community.

It is assumed that the owner (owner) wishes to run the campaign until a certain, predetermined block number is
reached on the blockchain (max_block). The owner also wishes to raise a minimum amount of QA (goal) without
which the project can not be started. The contract hence has three immutable parameters owner, max_block and
goal.

The immutable parameters are provided when the contract is deployed. At that point we wish to add a sanity check
that the goal is a strictly positive amount. If the contract is accidentally initialised with a goal of 0, then the contract
should not be deployed.

The total amount that has been donated to the campaign so far is stored in a field _balance. Any contract in Scilla
has an implicit _balance field of type Uint128, which is initialised to 0 when the contract is deployed, and which
holds the amount of QA in the contract’s account on the blockchain.

The campaign is deemed successful if the owner can raise the goal in the stipulated time. In case the campaign is

14 Chapter 3. Contents



scilla-doc Documentation, Release 0.11.0

unsuccessful, the donations are returned to the project backers who contributed during the campaign. The backers are
supposed to ask for refund explicitly.

The contract maintains two mutable fields:

• backers: a field map from a contributor’s address (a ByStr20 value) to the amount contributed, represented
with a Uint128 value. Since there are no backers initially, this map is initialized to an Emp (empty) map. The
map enables the contract to register a donor, prevent multiple donations and to refund back the money if the
campaign does not succeed.

• funded: a Boolean flag initialized to False that indicates whether the owner has already transferred the funds
after the end of the campaign.

The contract contains three transitions: Donate () that allows anyone to contribute to the crowdfunding cam-
paign, GetFunds () that allows only the owner to claim the donated amount and transfer it to owner and
ClaimBack() that allows contributors to claim back their donations in case the campaign is not successful.

Sanity check for contract parameters

To ensure that the goal is a strictly positive amount, we use a contract constraint:

with
let zero = Uint128 0 in
builtin lt zero goal

=>

The Boolean expression between with and => above is evaluated during contract deployment and the contract only
gets deployed if the result of evaluation is True. This ensures that the contract cannot be deployed with a goal of 0
by mistake.

Reading the Current Block Number

The deadline is given as a block number, so to check whether the deadline has passed, we must compare the deadline
against the current block number.

The current block number is read as follows:

blk <- & BLOCKNUMBER;

Block numbers have a dedicated type BNum in Scilla, so as to not confuse them with regular unsigned integers.

Note: Reading data from the blockchain is done using the operator <- &. Blockchain data cannot be updated directly
from the contract.

Reading and Updating the Current Balance

The target for the campaign is specified by the owner in the immutable parameter goal when the contract is deployed.
To check whether the target have been met, we must compare the total amount raised to the target.

The amount of QA raised is stored in the contract’s account on the blockchain, and can be accessed through the
implicitly declared _balance field as follows:

bal <- _balance;
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Money is represented as values of type Uint128.

Note: The _balance field is read using the operator <- just like any other contract field. However, the _balance
field can only be updated by accepting money from incoming messages (using the instruction accept), or by explic-
itly transferring money to other account (using the instruction send as explained below).

Sending Messages

In Scilla, there are two ways that transitions can transmit data. One way is through events, as covered in the previous
example. The other is through the sending of messages using the instruction send.

send is used to send messages to other accounts, either in order to invoke transitions on another smart contract, or
to transfer money to user accounts. On the other hand, events are dispatched signals that smart contracts can use to
transmit data to client applications.

To construct a message we use a similar syntax as when constructing events:

msg = {_tag : ""; _recipient : owner; _amount : bal; code : got_funds_code};

A message must contain the compulsory message fields _tag, _recipient and _amount. The _recipient
message field is the blockchain address (of type ByStr20) that the message is to be sent to, and the _amount
message field is the number of QA to be transferred to that account.

The value of the _tag message field is the name of the transition (of type String) that is to be invoked on the
contract deployed at _recipient address. If _recipient is the address of a user account then the value of _tag
is ignored, hence for simplicity we put "" here.

Note: To make it possible to refund both contracts and user accounts (this is useful if a backer used a wallet contract
to donate), use a standard transition name as per ZRC-5, i.e. AddFunds.

In addition to the compulsory fields the message may contain other fields, such as code above. However, if the
message recipient is a contract, the additional fields must have the same names and types as the parameters of the
transition being invoked on the recipient contract.

Sending a message is done using the send instruction, which takes a list of messages as a parameter. Since we will
only ever send one message at a time in the crowdfunding contract, we define a library function one_msg to construct
a list consisting of one message:

let one_msg =
fun (msg : Message) =>
let nil_msg = Nil {Message} in
Cons {Message} msg nil_msg

To send out a message, we first construct the message, insert it into a list, and send it:

msg = {_tag : ""; _recipient : owner; _amount : bal; code : got_funds_code};
msgs = one_msg msg;
send msgs

Procedures

The transitions of a Scilla contract often need to perform the same small sequence of instructions. In order to prevent
code duplication a contract may define a number of procedures, which may be invoked from the contract’s transitions.
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Procedures also help divide the contract code into separate, self-contained pieces which are easier to read and reason
about individually.

A procedure is declared using the keyword procedure. The end of a procedure is declared using the keyword end.
The procedure keyword is followed by the transition name, then the input parameters within (), and then the
statements of the procedure.

In our example the Donate transition will issue an event in three situations: An error event if the donation hap-
pens after the deadline, another error event if the backer has donated money previously, and a non-error event in-
dicating a successful donation. Since much of the event issuing code is identical, we decide to define a procedure
DonationEvent which is responsible for issuing the correct event:

procedure DonationEvent (failure : Bool, error_code : Int32)
match failure with
| False =>
e = {_eventname : "DonationSuccess"; donor : _sender;

amount : _amount; code : accepted_code};
event e

| True =>
e = {_eventname : "DonationFailure"; donor : _sender;

amount : _amount; code : error_code};
event e

end
end

The procedure takes two arguments: A Bool indicating whether the donation failed, and an error code indicating the
type of failure if a failure did indeed occur.

The procedure performs a match on the failure argument. If the donation did not fail, the error code is ignored,
and a DonationSuccess event is issued. Otherwise, if the donation failed, then a DonationFailure event is
issued with the error code that was passed as the second argument to the procedure.

The following code shows how to invoke the DonationEvent procedure with the arguments True and 0:

c = True;
err_code = Int32 0;
DonationEvent c err_code;

Note: The special parameters _sender, _origin and _amount are available to a procedure even though the
procedure is invoked by a transition rather than by an incoming message. It is not necessary to pass these special
parameters as arguments to the procedure.

Note: Procedures are similar to library functions in that they can be invoked from any transition (as long as the
transition is defined after the procedure). However, procedures are different from library functions in that library
functions cannot access the contract state, and procedures cannot return a value.

Procedures are similar to transitions in that they can access and change the contract state, as well as read the incoming
messages and send outgoing messages. However, procedures cannot be invoked from the blockchain layer. Only
transitions may be invoked from outside the contract, so procedures can be viewed as private transitions.

Putting it All Together

The complete crowdfunding contract is given below.
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(***************************************************)
(* Scilla version *)
(***************************************************)

scilla_version 0

(***************************************************)
(* Associated library *)
(***************************************************)
import BoolUtils

library Crowdfunding

let one_msg =
fun (msg : Message) =>
let nil_msg = Nil {Message} in
Cons {Message} msg nil_msg

let blk_leq =
fun (blk1 : BNum) =>
fun (blk2 : BNum) =>
let bc1 = builtin blt blk1 blk2 in
let bc2 = builtin eq blk1 blk2 in
orb bc1 bc2

let get_funds_allowed =
fun (cur_block : BNum) =>
fun (max_block : BNum) =>
fun (balance : Uint128) =>
fun (goal : Uint128) =>
let in_time = blk_leq cur_block max_block in
let deadline_passed = negb in_time in
let target_not_reached = builtin lt balance goal in
let target_reached = negb target_not_reached in
andb deadline_passed target_reached

let claimback_allowed =
fun (balance : Uint128) =>
fun (goal : Uint128) =>
fun (already_funded : Bool) =>
let target_not_reached = builtin lt balance goal in
let not_already_funded = negb already_funded in
andb target_not_reached not_already_funded

let accepted_code = Int32 1
let missed_deadline_code = Int32 2
let already_backed_code = Int32 3
let not_owner_code = Int32 4
let too_early_code = Int32 5
let got_funds_code = Int32 6
let cannot_get_funds = Int32 7
let cannot_reclaim_code = Int32 8
let reclaimed_code = Int32 9

(***************************************************)
(* The contract definition *)
(***************************************************)

(continues on next page)
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contract Crowdfunding

(* Parameters *)
(owner : ByStr20,
max_block : BNum,
goal : Uint128)

(* Contract constraint *)
with

let zero = Uint128 0 in
builtin lt zero goal

=>

(* Mutable fields *)
field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128
field funded : Bool = False

procedure DonationEvent (failure : Bool, error_code : Int32)
match failure with
| False =>
e = {_eventname : "DonationSuccess"; donor : _sender;

amount : _amount; code : accepted_code};
event e

| True =>
e = {_eventname : "DonationFailure"; donor : _sender;

amount : _amount; code : error_code};
event e

end
end

procedure PerformDonate ()
c <- exists backers[_sender];
match c with
| False =>
accept;
backers[_sender] := _amount;
DonationEvent c accepted_code

| True =>
DonationEvent c already_backed_code

end
end

transition Donate ()
blk <- & BLOCKNUMBER;
in_time = blk_leq blk max_block;
match in_time with
| True =>
PerformDonate

| False =>
t = True;
DonationEvent t missed_deadline_code

end
end

procedure GetFundsFailure (error_code : Int32)
e = {_eventname : "GetFundsFailure"; caller : _sender;

amount : _amount; code : error_code};
(continues on next page)
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event e
end

procedure PerformGetFunds ()
bal <- _balance;
tt = True;
funded := tt;
msg = {_tag : ""; _recipient : owner; _amount : bal; code : got_funds_code};
msgs = one_msg msg;
send msgs

end

transition GetFunds ()
is_owner = builtin eq owner _sender;
match is_owner with
| False =>
GetFundsFailure not_owner_code

| True =>
blk <- & BLOCKNUMBER;
bal <- _balance;
allowed = get_funds_allowed blk max_block bal goal;
match allowed with
| False =>

GetFundsFailure cannot_get_funds
| True =>

PerformGetFunds
end

end
end

procedure ClaimBackFailure (error_code : Int32)
e = {_eventname : "ClaimBackFailure"; caller : _sender;

amount : _amount; code : error_code};
event e

end

procedure PerformClaimBack (amount : Uint128)
delete backers[_sender];
msg = {_tag : ""; _recipient : _sender; _amount : amount; code : reclaimed_code};
msgs = one_msg msg;
e = { _eventname : "ClaimBackSuccess"; caller : _sender; amount : amount; code :

→˓reclaimed_code};
event e;
send msgs

end

transition ClaimBack ()
blk <- & BLOCKNUMBER;
after_deadline = builtin blt max_block blk;
match after_deadline with
| False =>
ClaimBackFailure too_early_code

| True =>
bal <- _balance;
f <- funded;
allowed = claimback_allowed bal goal f;
match allowed with

(continues on next page)
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| False =>
ClaimBackFailure cannot_reclaim_code

| True =>
res <- backers[_sender];
match res with
| None =>
(* Sender has not donated *)
ClaimBackFailure cannot_reclaim_code

| Some v =>
PerformClaimBack v

end
end

end
end

3.3.3 A Third Example: A Simple Token Exchange

As a third example we look at how contracts written in Scilla can interact by passing messages to each other, and by
reading each other’s states. As our example application we choose a simplified token exchange contracts in which
users can place offers of swapping one type of fungible tokens for another type.

Fungible Tokens

Recall that a fungible token is one which is indistinguishable from another token of the same type. For example, a US
$1 bank note is indistinguishable from any other US $1 bank note (for the purposes of using the bank note to pay for
goods, services, or other tokens, at least).

The Zilliqa Reference Contracts library offers specifications and reference implementations of commonly used con-
tract types, and the ZRC2 standard specifies a standard for fungible tokens, which we will use for this example. We
will not go into detail about how the token contract works, but only point out a few important aspects that will be
needed in order to implement the token exchange.

Exchange Specification

We want our simple exchange to support the following functionality:

• The exchange has a number of listed tokens that can be freely swapped with each other. Each listed token is
identified by its token code (e.g., “USD” for US dollars).

• The exchange should have an administrator at all times. The administrator is in charge of approving token
contracts, and listing them on the exchange. The administrator may pass the administrator role on to someone
else.

• Any user can place an order on the exchange. To place an order, the user specifies which token he wants to sell
and how many of them he is offering, and which token he wants to buy and how many he wants in return. The
contract keeps track of every active (unmatched) order.

• When a user attempts to place an order to sell some tokens, the exchange checks that the user actually has those
tokens to sell. If he does, then the exchange claims those tokens and holds on to them until the order is matched.

• Any user can match an active order on the exchange. To match an order, the user specifies which order to match.

• When a user attempts to match an order, the exchange checks that the user actually has the tokens that the order
placer wants to buy. If he does, then the exchange transfers the tokens that were claimed when the order was
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placed to the order matcher, and transfers the tokens that the order placer wants to buy from the order matcher
to the order placer. After the tokens have been transferred the exchange deletes the fulfilled order.

To keep the example brief our exchange will not support unlisting of tokens, cancellation of orders, orders with expiry
time, prioritising orders so that the order matcher gets the best deal possible, partial matching of orders, securing
the exchange against abuse, fees for trading on the exchange, etc.. We encourage the reader to implement additional
features as a way to familiarise themselves even further with Scilla.

The Administrator Role

The exchange must have an administrator at all times, including when it is first deployed. The administrator may
change over time, so we define a mutable field admin to keep track of the current administrator, and initialise it to an
initial_admin, which is given as an immutable parameter:

contract SimpleExchange
(

initial_admin : ByStr20 with end
)

field admin : ByStr20 with end = initial_admin

The type of the admin field is ByStr20 with end, which is an address type. As in the earlier examples ByStr20
is the type of byte strings of length 20, but we now add the addtional requirement that when that byte string is
interpreted as an address on the network, the address must be in use, and the contents at that address must satisfy
whatever is between the with and end keywords.

In this case there is nothing between with and end, so we have no additional requirements. However, the address
must be in use, either by a user or by another contract - otherwise Scilla will not accept it as having a legal address
type. (We will go into more detail about address types when the exchange interacts with the listed token contracts.)

Multiple transitions will need to check that the _sender is the current admin, so let us define a procedure that
checks that that is the case:

procedure CheckSenderIsAdmin()
current_admin <- admin;
is_admin = builtin eq _sender current_admin;
match is_admin with
| True => (* Nothing to do *)
| False =>
(* Construct an exception object and throw it *)
e = { _exception : "SenderIsNotAdmin" };
throw e

end
end

If the _sender is the current administrator, then nothing happens, and whichever transition called this procedure can
continue. If the _sender is someone else, however, the procedure throws an exception causing the current transaction
to be aborted.

We want the administrator to be able to pass on the administrator role to someone else, so we define our first transition
SetAdmin as follows:

transition SetAdmin(new_admin : ByStr20 with end)
(* Only the former admin may appoint a new admin *)
CheckSenderIsAdmin;
admin := new_admin

end
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The transition applies the CheckSenderIsAdmin procedure, and if no exception is thrown then the sender is indeed
the current administrator, and is thus allowed to pass on the administrator role on to someone else. The new admin
must once again be an address that is in use.

Intermezzo: Transferring Tokens On Behalf Of The Token Owner

Before we continue adding features to our exchange we must first look at how token contracts transfer tokens between
users.

The ZRC2 token standard defines a field balances which keeps track of how many tokens each user has:

field balances: Map ByStr20 Uint128

However, this is not particularly useful for our exchange, because the token contract won’t allow the exchange to
transfer tokens belonging to someone other than the exchange itself.

Instead, the ZRC2 standard defines a field allowances, which a user who owns tokens can use to allow another
user partial access to the owner’s tokens:

field allowances: Map ByStr20 (Map ByStr20 Uint128)

For instance, if Alice has given Bob an allowance of 100 tokens, then the allowances map in token contract will
contain the value allowances[<address of Alice>][<address of Bob>] = 100. This allows Bob
to spend 100 of Alice’s tokens as if they were his own. (Alice can of course withdraw the allowance, as long as Bob
hasn’t yet spent the tokens).

Before a user places an order, the user should provide the exchange with an allowance of the token he wants to sell to
cover the order. The user can then place the order, and the exchange can check that the allowance is sufficient. The
exchange then transfers the tokens to its own account for holding until the order is matched.

Similarly, before a user matches an order, the user should provide the exchange with an allowance of the token that
the order placer wants to buy. The user can then match the order, and the exchange can check that the allowance is
sufficent. The exchange then transfers those tokens to the user who placed the order, and transfers to the matching user
the tokens that it transferred to itself when the order was placed.

In order to check the current allowance that a user has given to the exchange, we will need to specify the allowances
field in the token address type. We do this as follows:

ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20 Uint128) end

As with the admin field we require that the address is in use. Additionally, the requirements between with and end
must also be satisfied:

• The keyword contract specifies that the address must be in use by a contract, and not by a user.

• The keyword field specifies that the contract in question must contain a mutable field with the specified name
and of the specified type.

Listing a New Token

The exchange keeps track of its listed tokens, i.e., which tokens are allowed to be traded on the exchange. We do this
by defining a map from the token code (a String) to the address of the token.

field listed_tokens :
Map String (ByStr20 with contract

field allowances : Map ByStr20 (Map ByStr20 Uint128)
end)

(continues on next page)
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= Emp String (ByStr20 with contract
field allowances : Map ByStr20 (Map ByStr20 Uint128)

end)

Only the administrator is allowed to list new tokens, so we leverage the CheckSenderIsAdmin procedure again
here.

Additionally, we only want to list tokens that have a different token code from the previously listed tokens. For this
purpose we define a procedure CheckIsTokenUnlisted to check whether a token code is defined as a key in the
listed_tokens map. :

library SimpleExchangeLib

let false = False

...

contract SimpleExchange (...)

...

procedure ThrowListingStatusException(
token_code : String,
expected_status : Bool,
actual_status : Bool)
e = { _exception : "UnexpectedListingStatus";

token_code: token_code;
expected : expected_status;
actual : actual_status };

throw e
end

procedure CheckIsTokenUnlisted(
token_code : String
)
(* Is the token code listed? *)
token_code_is_listed <- exists listed_tokens[token_code];
match token_code_is_listed with
| True =>
(* Incorrect listing status *)
ThrowListingStatusException token_code false token_code_is_listed

| False => (* Nothing to do *)
end

end

This time we define a helper procedure ThrowListingStatusException which unconditionally throws an
exception. This will be useful later when we later write the transition for placing orders, because we will need to
check that the tokens involved in the order are listed.

We also define the constant false in the contract’s library. This is due to the fact that Scilla requires all values to
be named before they are used in computations. Defining constants in library code prevents us from cluttering the
transition code with constant definitions:

(* Incorrect listing status *)
false = False; (* We don't want to do it like this *)
ThrowListingStatusException token_code false token_code_is_listed
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With the helper procedures in place we are now ready to define the ListToken transition as follows:

transition ListToken(
token_code : String,
new_token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20

→˓Uint128) end
)
(* Only the admin may list new tokens. *)
CheckSenderIsAdmin;
(* Only new token codes are allowed. *)
CheckIsTokenUnlisted token_code;
(* Everything is ok. The token can be listed *)
listed_tokens[token_code] := new_token

end

Placing an Order

To place an order a user must specify the token code and the amount of the token he wants to sell, and the token code
and amount he wants to buy. We invoke the ThrowListingStatusException procedure if any of the token
codes are unlisted:

transition PlaceOrder(
token_code_sell : String,
sell_amount : Uint128,
token_code_buy: String,
buy_amount : Uint128
)
(* Check that the tokens are listed *)
token_sell_opt <- listed_tokens[token_code_sell];
token_buy_opt <- listed_tokens[token_code_buy];
match token_sell_opt with
| Some token_sell =>
match token_buy_opt with
| Some token_buy =>
...

| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_buy true false

end
| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_sell true false

end
end

If both tokens are listed, we must first check that the user has supplied a sufficient allowance to the exchange. We will
need a similar check when another user matches the order, so we define a helper procedure CheckAllowance to
perform the check:

procedure CheckAllowance(
token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20 Uint128)

→˓end,
expected : Uint128
)
...

end
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To perform the check we will need to perform a remote read of the allowances field in the token contract. We are
interested in the allowance given by the _sender to the exchange, whose address is given by a special immutable
field _this_address, so we want to remote read the value of allowances[_sender][_this_address]
in the token contract.

Remote reads in Scilla are performed using the operator <- &, and we use . notation to specify the contract that we
want to remote read from. The entire statement for the remote read is therefore as follows:

actual_opt <-& token.allowances[_sender][_this_address];

Just as when we perform a local read of a map, the result of reading from a remote map is an optional value. If the
result is Some v for some v, then the user has provided the exchange with an allowance of v tokens, and if the result
is None the user has not supplied an allowance at all. We therefore need to pattern-match the result to get the actual
allowance:

(* Find actual allowance. Use 0 if None is given *)
actual = match actual_opt with

| Some x => x
| None => zero
end;

Once again, we define the constant zero = Uint128 0 in the contract library for convenience.

We can now compare the actual allowance to the allowance we are expecting, and throw an exception if the actual
allowance is insufficient:

is_sufficient = uint128_le expected actual;
match is_sufficient with
| True => (* Nothing to do *)
| False =>
ThrowInsufficientAllowanceException token expected actual

end

The function uint128_le is a utility function which performs a less-than-or-equal comparison on values of type
Uint128. The function is defined in the IntUtils part of the standard library, so in order to use the function we
must import IntUtils into the contract, which is done immediately after the scilla_version preamble, and
before the contract library definitions:

scilla_version 0

import IntUtils

library SimpleExchangeLib
...

We also utilise a helper procedure ThrowInsufficientAllowanceException to throw an exception if the
allowance is insufficient, so the CheckAllowance procedure ends up looking as follows:

procedure ThrowInsufficientAllowanceException(
token : ByStr20,
expected : Uint128,
actual : Uint128)
e = { _exception : "InsufficientAllowance";

token: token;
expected : expected;
actual : actual };

throw e

(continues on next page)
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end

procedure CheckAllowance(
token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20 Uint128)

→˓end,
expected : Uint128
)
actual_opt <-& token.allowances[_sender][_this_address];
(* Find actual allowance. Use 0 if None is given *)
actual = match actual_opt with

| Some x => x
| None => zero
end;

is_sufficient = uint128_le expected actual;
match is_sufficient with
| True => (* Nothing to do *)
| False =>
ThrowInsufficientAllowanceException token expected actual

end
end

transition PlaceOrder(
token_code_sell : String,
sell_amount : Uint128,
token_code_buy: String,
buy_amount : Uint128
)
(* Check that the tokens are listed *)
token_sell_opt <- listed_tokens[token_code_sell];
token_buy_opt <- listed_tokens[token_code_buy];
match token_sell_opt with
| Some token_sell =>
match token_buy_opt with
| Some token_buy =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance token_sell sell_amount;
...

| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_buy true false

end
| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_sell true false

end
end

If the user has given the exchange a sufficient allowance, the exchange can send a message to the token contract to
perform the transfer of tokens from the allowance the exchange’s own balance. The transition we need to invoke on
the token contract is called TransferFrom, as opposed to Transfer which transfers funds from the sender’s own
token balance rather than from the sender’s allowance of someone else’s balance.

Since the message will look much like the messages that we need when an order is matched, we generate the message
using helper functions in the contract library (we will also need a new constant true):

library SimpleExchangeLib

(continues on next page)
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let true = True

...

let one_msg : Message -> List Message =
fun (msg : Message) =>
let mty = Nil { Message } in
Cons { Message } msg mty

let mk_transfer_msg : Bool -> ByStr20 -> ByStr20 -> ByStr20 -> Uint128 -> Message =
fun (transfer_from : Bool) =>
fun (token_address : ByStr20) =>
fun (from : ByStr20) =>
fun (to : ByStr20) =>
fun (amount : Uint128) =>
let tag = match transfer_from with

| True => "TransferFrom"
| False => "Transfer"
end

in
{ _recipient : token_address;
_tag : tag;
_amount : Uint128 0; (* No Zil are transferred, only custom tokens *)
from : from;
to : to;
amount : amount }

let mk_place_order_msg : ByStr20 -> ByStr20 -> ByStr20 -> Uint128 -> List Message =
fun (token_address : ByStr20) =>
fun (from : ByStr20) =>
fun (to : ByStr20) =>
fun (amount : Uint128) =>
(* Construct a TransferFrom messsage to transfer from seller's allowance to

→˓exhange *)
let msg = mk_transfer_msg true token_address from to amount in
(* Create a singleton list *)
one_msg msg

contract SimpleExchange (...)

...

transition PlaceOrder(
token_code_sell : String,
sell_amount : Uint128,
token_code_buy: String,
buy_amount : Uint128
)
(* Check that the tokens are listed *)
token_sell_opt <- listed_tokens[token_code_sell];
token_buy_opt <- listed_tokens[token_code_buy];
match token_sell_opt with
| Some token_sell =>
match token_buy_opt with
| Some token_buy =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance token_sell sell_amount;

(continues on next page)
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(* Transfer the sell tokens to the exchange for holding. Construct a
→˓TransferFrom message to the token contract. *)

msg = mk_place_order_msg token_sell _sender _this_address sell_amount;
(* Send message when the transition completes. *)
send msg;
...

| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_buy true false

end
| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_sell true false

end
end

Finally, we need to store the new order, so that users may match the order in the future. For this we define a new type
Order, which holds all the information needed when eventually the order is matched:

(* Order placer, sell token, sell amount, buy token, buy amount *)
type Order =
| Order of ByStr20

(ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20
→˓Uint128) end)

Uint128
(ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20

→˓Uint128) end)
Uint128

A value of type Order is given by the type constructor Order, a token address and an amount of tokens to sell, and
a token address and an amount of tokens to buy.

We now need a field containing a map from order numbers (of type Uint128) to Order, which represents the
currently active orders. Additionally, we will need a way to generate a unique order number, so we’ll define a field
which holds the next order number to use:

field active_orders : Map Uint128 Order = Emp Uint128 Order

field next_order_no : Uint128 = zero

To add a new order we need to generate a new order number, store the generated order number and the new order
in the active_orders map, and finally increment the next_order_no field (using the library constant one =
Uint128 1) so that it is ready for the next order to be placed. We will put that in a helper procedure AddOrder,
and add a call to the procedure in the PlaceOrder transition:

procedure AddOrder(
order : Order
)
(* Get the next order number *)
order_no <- next_order_no;
(* Add the order *)
active_orders[order_no] := order;
(* Update the next_order_no field *)
new_order_no = builtin add order_no one;
next_order_no := new_order_no

end
(continues on next page)
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transition PlaceOrder(
token_code_sell : String,
sell_amount : Uint128,
token_code_buy: String,
buy_amount : Uint128
)
(* Check that the tokens are listed *)
token_sell_opt <- listed_tokens[token_code_sell];
token_buy_opt <- listed_tokens[token_code_buy];
match token_sell_opt with
| Some token_sell =>
match token_buy_opt with
| Some token_buy =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance token_sell sell_amount;
(* Transfer the sell tokens to the exchange for holding. Construct a

→˓TransferFrom message to the token contract. *)
msg = mk_place_order_msg token_sell _sender _this_address sell_amount;
(* Send message when the transition completes. *)
send msg;
(* Create order and add to list of active orders *)
order = Order _sender token_sell sell_amount token_buy buy_amount;
AddOrder order

| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_buy true false

end
| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_sell true false

end
end

PlaceOrder is now complete, but there is still one thing missing. The ZRC2 token standard specifies that when a
TransferFrom transition is executed, the token sends messages to the recipient and the _sender (known as the
initiator) notifying them of the successful transfer. These notifications are known as callbacks. Since our exchange
executes a TransferFrom transition on the sell token, and since the exchange is the recipient of those tokens, we
will need to specify transitions that can handle both callbacks - if we don’t, then the callbacks will not be recognised,
causing the entire PlaceOrder transaction to fail.

Token contracts notify the recipients of token transfers because such notifications add an extra safeguard against the
risk of transferring tokens to a contract that is unable to deal with token ownership. For instance, if someone were
to transfer tokens to the HelloWorld contract in the first example in this section, then the tokens would be locked
forever because the HelloWorld contract is incapable of doing anything with the tokens.

Our exchange is only capable of dealing with tokens for which there is an active order, but in principle there is
nothing stopping a user from transferring funds to the exchange without placing an order, so we need to ensure
that the exchange is only involved in token transfers that it itself has initiated. We therefore define a procedure
CheckInitiator, which throws an exception if the exchange is involved in a token transfer that it itself did not
initiate, and invoke that procedure from all callback transitions:

procedure CheckInitiator(
initiator : ByStr20)
initiator_is_this = builtin eq initiator _this_address;
match initiator_is_this with

(continues on next page)
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| True => (* Do nothing *)
| False =>
e = { _exception : "UnexpecedTransfer";

token_address : _sender;
initiator : initiator };

throw e
end

end

transition RecipientAcceptTransferFrom (
initiator : ByStr20,
sender : ByStr20,
recipient : ByStr20,
amount : Uint128)
CheckInitiator initiator

end

transition TransferFromSuccessCallBack (
initiator : ByStr20,
sender : ByStr20,
recipient : ByStr20,
amount : Uint128)
CheckInitiator initiator

end

Matching an Order

For the MatchOrder transition we can leverage many of the helper functions and procedures defined in the previous
section.

The user specifies an order he wishes to match. We then look up the order number in the active_orders map, and
throw an exception if the order is not found:

transition MatchOrder(
order_id : Uint128)
order <- active_orders[order_id];
match order with
| Some (Order order_placer sell_token sell_amount buy_token buy_amount) =>
...

| None =>
e = { _exception : "UnknownOrder";

order_id : order_id };
throw e

end
end

In order to match the order, the matcher has to provide sufficient allowance of the buy token. This is checked by the
CheckAllowance procedure we defined earlier, so we simply reuse that procedure here:

transition MatchOrder(
order_id : Uint128)
order <- active_orders[order_id];
match order with
| Some (Order order_placer sell_token sell_amount buy_token buy_amount) =>
(* Check that the placer has allowed sufficient funds to be accessed *)

(continues on next page)
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CheckAllowance buy_token buy_amount;
...

| None =>
e = { _exception : "UnknownOrder";

order_id : order_id };
throw e

end
end

We now need to generate two transfer messages: One message is a TransferFrom message on the buy token,
transferring the matcher’s allowance to the user who placed the order, and the other message is a Transfer message
on the sell token, transferring the tokens held by the exchange to the order matcher. Once again, we define helper
functions to generate the messages:

library SimpleExchangeLib

...

let two_msgs : Message -> Message -> List Message =
fun (msg1 : Message) =>
fun (msg2 : Message) =>
let first = one_msg msg1 in
Cons { Message } msg2 first

let mk_make_order_msgs : ByStr20 -> Uint128 -> ByStr20 -> Uint128 ->
ByStr20 -> ByStr20 -> ByStr20 -> List Message =

fun (token_sell_address : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy_address : ByStr20) =>
fun (buy_amount : Uint128) =>
fun (this_address : ByStr20) =>
fun (order_placer : ByStr20) =>
fun (order_maker : ByStr20) =>
(* Construct a Transfer messsage to transfer from exchange to maker *)
let sell_msg = mk_transfer_msg false token_sell_address this_address order_maker

→˓sell_amount in
(* Construct a TransferFrom messsage to transfer from maker to placer *)
let buy_msg = mk_transfer_msg true token_buy_address order_maker order_placer

→˓buy_amount in
(* Create a singleton list *)
two_msgs sell_msg buy_msg

...

contract SimpleExchange (...)

...

transition MatchOrder(
order_id : Uint128)
order <- active_orders[order_id];
match order with
| Some (Order order_placer sell_token sell_amount buy_token buy_amount) =>

(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance buy_token buy_amount;
(* Create the two transfer messages and send them *)

(continues on next page)
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msgs = mk_make_order_msgs sell_token sell_amount buy_token buy_amount _this_
→˓address order_placer _sender;

send msgs;
...

| None =>
e = { _exception : "UnknownOrder";

order_id : order_id };
throw e

end
end

Since the order has now been matched, it should no longer be listed as an active order, so we delete the entry in
active_orders:

transition MatchOrder(
order_id : Uint128)
order <- active_orders[order_id];
match order with
| Some (Order order_placer sell_token sell_amount buy_token buy_amount) =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance buy_token buy_amount;
(* Create the two transfer messages and send them *)
msgs = mk_make_order_msgs sell_token sell_amount buy_token buy_amount _this_

→˓address order_placer _sender;
send msgs;
(* Order has now been matched, so remove it *)
delete active_orders[order_id]

| None =>
e = { _exception : "UnknownOrder";

order_id : order_id };
throw e

end
end

This concludes the MatchOrder transition, but we need to define one additional callback transition. When placing
an order we executed a TransferFrom transition, but now we also execute a Transfer transition, which gives
rise to a different callback:

transition TransferSuccessCallBack (
initiator : ByStr20,
sender : ByStr20,
recipient : ByStr20,
amount : Uint128)
(* The exchange only accepts transfers that it itself has initiated. *)
CheckInitiator initiator

end

Note that we do not need to specify a transition handling the receipt of tokens from a Transfer transition, because
the exchange never executes a Transfer with itself as the recipient. By not defining the callback transition at all,
we also take care of the situation where a user performs a Transfer with the exchange as the recipient, because the
recipient callback won’t have a matching transition on the exchange, causing the entire transfer transaction to fail.

Adding callbacks

Similar to how tokens execute callbacks whenever a transfer is performed, we will want to issue callbacks to the users
and contracts that trade on our exchange. Callbacks should be issued in the following cases:
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• When an order is placed: The address placing the order should receive a callback.

• When an order is matched: The address that placed the order and the address matching the order should each
receive a callback.

We choose to only issue callbacks whenever the addresses involved are contracts. This is not strictly necessary, since
a callback sent to a user address does not cause a failure, but we do this to illustrate the use of address type casts.

We add the following helper functions to the contract library. These simply construct the callback messages to the
relevant addresses in the cases mentioned above:

let mk_place_order_callback_msg : ByStr20 -> ByStr20 -> Uint128 -> ByStr20 -> Uint128
→˓-> List Message =
fun (order_placer : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_placer;

_tag : "PlaceOrderSuccesful";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

in
one_msg msg

let mk_order_matched_callback_msg =
fun (order_matcher : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_matcher;

_tag : "MatchOrderSuccesful";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

in
one_msg msg

let mk_placed_order_matched_callback_msg =
fun (order_placer : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_placer;

_tag : "PlacedOrderMatched";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

in
one_msg msg
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When an order is placed successfully we want to check if the placer is a contract. The way to check this is by using an
address type cast, which is done as follows:

sender_as_contract_opt <-& _sender as ByStr20 with contract end;

If _sender satisfies the address type ByStr20 with contract end, then sender_as_contract_opt
will be bound to the value Some v, where v is a value that is equal to _sender, but which has the type ByStr20
with contract end. If _sender does not satisfy the type, then sender_as_contract_opt will be bound
to None.

Performing this type cast allows us to issue a callback in PlaceOrder when _sender is a contract:

match sender_as_contract_opt with
| Some sender_as_contract =>

callback_msg = mk_place_order_callback_msg _sender token_sell sell_amount token_buy
→˓buy_amount;
send callback_msg

| None => (* Do nothing *)
end

We add a similar check to MatchOrder, except that here we might need to issue callbacks both to the _sender and
the order placer:

match sender_as_contract_opt with
| Some sender_as_contract =>

callback_msg = mk_order_matched_callback_msg _sender sell_token sell_amount buy_
→˓token buy_amount;
send callback_msg

| None => (* Do nothing *)
end;
placer_as_contract_opt <-& order_placer as ByStr20 with contract end;
match placer_as_contract_opt with
| Some placer_as_contract =>

callback_msg = mk_placed_order_matched_callback_msg order_placer sell_token sell_
→˓amount buy_token buy_amount;
send callback_msg

| None => (* Do nothing *)
end

Putting it All Together

We now have everything in place to specify the entire contract:

scilla_version 0

import IntUtils

library SimpleExchangeLib

(* Order placer, sell token, sell amount, buy token, buy amount *)
type Order =
| Order of ByStr20

(ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20
→˓Uint128) end)

Uint128
(ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20

→˓Uint128) end)
(continues on next page)
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Uint128

(* Helper values and functions *)
let true = True
let false = False

let zero = Uint128 0
let one = Uint128 1

let one_msg : Message -> List Message =
fun (msg : Message) =>
let mty = Nil { Message } in
Cons { Message } msg mty

let two_msgs : Message -> Message -> List Message =
fun (msg1 : Message) =>
fun (msg2 : Message) =>
let first = one_msg msg1 in
Cons { Message } msg2 first

let mk_transfer_msg : Bool -> ByStr20 -> ByStr20 -> ByStr20 -> Uint128 -> Message =
fun (transfer_from : Bool) =>
fun (token_address : ByStr20) =>
fun (from : ByStr20) =>
fun (to : ByStr20) =>
fun (amount : Uint128) =>
let tag = match transfer_from with

| True => "TransferFrom"
| False => "Transfer"
end

in
{ _recipient : token_address;
_tag : tag;
_amount : Uint128 0; (* No Zil are transferred, only custom tokens *)
from : from;
to : to;
amount : amount }

let mk_place_order_msg : ByStr20 -> ByStr20 -> ByStr20 -> Uint128 -> List Message =
fun (token_address : ByStr20) =>
fun (from : ByStr20) =>
fun (to : ByStr20) =>
fun (amount : Uint128) =>
(* Construct a TransferFrom messsage to transfer from seller's allowance to

→˓exhange *)
let msg = mk_transfer_msg true token_address from to amount in
(* Create a singleton list *)
one_msg msg

let mk_make_order_msgs : ByStr20 -> Uint128 -> ByStr20 -> Uint128 ->
ByStr20 -> ByStr20 -> ByStr20 -> List Message =

fun (token_sell_address : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy_address : ByStr20) =>
fun (buy_amount : Uint128) =>
fun (this_address : ByStr20) =>
fun (order_placer : ByStr20) =>

(continues on next page)
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fun (order_maker : ByStr20) =>
(* Construct a Transfer messsage to transfer from exchange to maker *)
let sell_msg = mk_transfer_msg false token_sell_address this_address order_maker

→˓sell_amount in
(* Construct a TransferFrom messsage to transfer from maker to placer *)
let buy_msg = mk_transfer_msg true token_buy_address order_maker order_placer buy_

→˓amount in
(* Create a singleton list *)
two_msgs sell_msg buy_msg

(* Callback messages *)
let mk_place_order_callback_msg : ByStr20 -> ByStr20 -> Uint128 -> ByStr20 -> Uint128
→˓-> List Message =
fun (order_placer : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_placer;

_tag : "PlaceOrderSuccesful";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

in
one_msg msg

let mk_order_matched_callback_msg =
fun (order_matcher : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_matcher;

_tag : "MatchOrderSuccesful";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

in
one_msg msg

let mk_placed_order_matched_callback_msg =
fun (order_placer : ByStr20) =>
fun (token_sell : ByStr20) =>
fun (sell_amount : Uint128) =>
fun (token_buy : ByStr20) =>
fun (buy_amount : Uint128) =>
let msg = { _recipient : order_placer;

_tag : "PlacedOrderMatched";
_amount : Uint128 0;
selling_token : token_sell;
selling_amount : sell_amount;
buying_token : token_buy;
buying_amount : buy_amount }

(continues on next page)
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in
one_msg msg

contract SimpleExchange
(

initial_admin : ByStr20 with end
)

(* Active admin. *)
field admin : ByStr20 with end = initial_admin

(* Tokens listed on the exchange. *)
field listed_tokens :

Map String (ByStr20 with contract
field allowances : Map ByStr20 (Map ByStr20 Uint128)

end)
= Emp String (ByStr20 with contract

field allowances : Map ByStr20 (Map ByStr20 Uint128)
end)

(* Active orders, identified by the order number *)
field active_orders : Map Uint128 Order = Emp Uint128 Order

(* The order number to use when the next order is placed *)
field next_order_no : Uint128 = zero

procedure ThrowListingStatusException(
token_code : String,
expected_status : Bool,
actual_status : Bool)
e = { _exception : "UnexpectedListingStatus";

token_code: token_code;
expected : expected_status;
actual : actual_status };

throw e
end

procedure ThrowInsufficientAllowanceException(
token : ByStr20,
expected : Uint128,
actual : Uint128)
e = { _exception : "InsufficientAllowance";

token: token;
expected : expected;
actual : actual };

throw e
end

(* Check that _sender is the active admin. *)
(* If not, throw an error and abort the transaction *)
procedure CheckSenderIsAdmin()

current_admin <- admin;
is_admin = builtin eq _sender current_admin;
match is_admin with
| True => (* Nothing to do *)
| False =>

(* Construct an exception object and throw it *)
(continues on next page)
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e = { _exception : "SenderIsNotAdmin" };
throw e

end
end

(* Change the active admin *)
transition SetAdmin(

new_admin : ByStr20 with end
)
(* Only the former admin may appoint a new admin *)
CheckSenderIsAdmin;
admin := new_admin

end

(* Check that a given token code is not already listed. If it is, throw an error. *)
procedure CheckIsTokenUnlisted(

token_code : String
)
(* Is the token code listed? *)
token_code_is_listed <- exists listed_tokens[token_code];
match token_code_is_listed with
| True =>
(* Incorrect listing status *)
ThrowListingStatusException token_code false token_code_is_listed

| False => (* Nothing to do *)
end

end

(* List a new token on the exchange. Only the admin may list new tokens. *)
(* If a token code is already in use, raise an error *)
transition ListToken(

token_code : String,
new_token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20

→˓Uint128) end
)
(* Only the admin may list new tokens. *)
CheckSenderIsAdmin;
(* Only new token codes are allowed. *)
CheckIsTokenUnlisted token_code;
(* Everything is ok. The token can be listed *)
listed_tokens[token_code] := new_token

end

(* Check that the sender has allowed access to sufficient funds *)
procedure CheckAllowance(
token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20 Uint128)

→˓end,
expected : Uint128
)
actual_opt <-& token.allowances[_sender][_this_address];
(* Find actual allowance. Use 0 if None is given *)
actual = match actual_opt with

| Some x => x
| None => zero
end;

is_sufficient = uint128_le expected actual;
match is_sufficient with

(continues on next page)
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| True => (* Nothing to do *)
| False =>
ThrowInsufficientAllowanceException token expected actual

end
end

procedure AddOrder(
order : Order
)
(* Get the next order number *)
order_no <- next_order_no;
(* Add the order *)
active_orders[order_no] := order;
(* Update the next_order_no field *)
new_order_no = builtin add order_no one;
next_order_no := new_order_no

end

(* Place an order on the exchange *)
transition PlaceOrder(

token_code_sell : String,
sell_amount : Uint128,
token_code_buy: String,
buy_amount : Uint128
)
(* Check that the tokens are listed *)
token_sell_opt <- listed_tokens[token_code_sell];
token_buy_opt <- listed_tokens[token_code_buy];
match token_sell_opt with
| Some token_sell =>
match token_buy_opt with
| Some token_buy =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance token_sell sell_amount;
(* Transfer the sell tokens to the exchange for holding. Construct a

→˓TransferFrom message to the token contract. *)
msg = mk_place_order_msg token_sell _sender _this_address sell_amount;
(* Send message when the transition completes. *)
send msg;
(* Create order and add to list of active orders *)
order = Order _sender token_sell sell_amount token_buy buy_amount;
AddOrder order;
(* Do a callback if the placer is a contract *)
sender_as_contract_opt <-& _sender as ByStr20 with contract end;
match sender_as_contract_opt with
| Some sender_as_contract =>
callback_msg = mk_place_order_callback_msg _sender token_sell sell_amount

→˓token_buy buy_amount;
send callback_msg

| None => (* Do nothing *)
end

| None =>
(* Unlisted token *)
ThrowListingStatusException token_code_buy true false

end
| None =>
(* Unlisted token *)

(continues on next page)
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ThrowListingStatusException token_code_sell true false
end

end

transition MatchOrder(
order_id : Uint128)
order <- active_orders[order_id];
match order with
| Some (Order order_placer sell_token sell_amount buy_token buy_amount) =>
(* Check that the placer has allowed sufficient funds to be accessed *)
CheckAllowance buy_token buy_amount;
(* Create the two transfer messages and send them *)
msgs = mk_make_order_msgs sell_token sell_amount buy_token buy_amount _this_

→˓address order_placer _sender;
send msgs;
(* Order has now been matched, so remove it *)
delete active_orders[order_id];
(* Do callbacks if the matcher or the placer were contracts *)
sender_as_contract_opt <-& _sender as ByStr20 with contract end;
match sender_as_contract_opt with
| Some sender_as_contract =>
callback_msg = mk_order_matched_callback_msg _sender sell_token sell_amount buy_

→˓token buy_amount;
send callback_msg

| None => (* Do nothing *)
end;
placer_as_contract_opt <-& order_placer as ByStr20 with contract end;
match placer_as_contract_opt with
| Some placer_as_contract =>
callback_msg = mk_placed_order_matched_callback_msg order_placer sell_token

→˓sell_amount buy_token buy_amount;
send callback_msg

| None => (* Do nothing *)
end

| None =>
e = { _exception : "UnknownOrder";

order_id : order_id };
throw e

end
end

procedure CheckInitiator(
initiator : ByStr20)
initiator_is_this = builtin eq initiator _this_address;
match initiator_is_this with
| True => (* Do nothing *)
| False =>
e = { _exception : "UnexpecedTransfer";

token_address : _sender;
initiator : initiator };

throw e
end

end

transition RecipientAcceptTransferFrom (
initiator : ByStr20,
sender : ByStr20,

(continues on next page)
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recipient : ByStr20,
amount : Uint128)
(* The exchange only accepts transfers that it itself has initiated. *)
CheckInitiator initiator

end

transition TransferFromSuccessCallBack (
initiator : ByStr20,
sender : ByStr20,
recipient : ByStr20,
amount : Uint128)
(* The exchange only accepts transfers that it itself has initiated. *)
CheckInitiator initiator

end

transition TransferSuccessCallBack (
initiator : ByStr20,
sender : ByStr20,
recipient : ByStr20,
amount : Uint128)
(* The exchange only accepts transfers that it itself has initiated. *)
CheckInitiator initiator

end

As mentioned in the introduction we have kept the exchange simplistic in order to keep the focus on Scilla features.

To further familiarise themselves with Scilla we encourage the reader to add additional features such as unlisting of
tokens, cancellation of orders, orders with expiry time, prioritising orders so that the order matcher gets the best deal
possible, partial matching of orders, securing the exchange against abuse, fees for trading on the exchange, etc..

3.4 Scilla in Depth

3.4.1 Structure of a Scilla Contract

The general structure of a Scilla contract is given in the code fragment below:

• The contract starts with the declaration of scilla_version, which indicates which major Scilla version the
contract uses.

• Then follows the declaration of a library that contains purely mathematical functions, e.g., a function to
compute the Boolean AND of two bits, or a function computing the factorial of a given natural number.

• Then follows the actual contract definition declared using the keyword contract.

• Within a contract, there are then four distinct parts:

1. The first part declares the immutable parameters of the contract.

2. The second part describes the contract’s constraint, which must be valid when the contract is deployed.

3. The third part declares the mutable fields.

4. The fourth part contains all transition and procedure definitions.

(* Scilla contract structure *)

(***************************************************)

(continues on next page)
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(continued from previous page)

(* Scilla version *)
(***************************************************)

scilla_version 1

(***************************************************)
(* Associated library *)
(***************************************************)

library MyContractLib

(* Library code block follows *)

(***************************************************)
(* Contract definition *)
(***************************************************)

contract MyContract

(* Immutable contract parameters declaration *)

(vname_1 : vtype_1,
vname_2 : vtype_2)

(* Contract constraint *)
with

(* Constraint expression *)
=>

(* Mutable fields declaration *)

field vname_1 : vtype_1 = init_val_1
field vname_2 : vtype_2 = init_val_2

(* Transitions and procedures *)

(* Procedure signature *)
procedure firstProcedure (param_1 : type_1, param_2 : type_2)

(* Procedure body *)

end

(* Transition signature *)
transition firstTransition (param_1 : type_1, param_2 : type_2)

(* Transition body *)

end

(* Procedure signature *)
procedure secondProcedure (param_1 : type_1, param_2 : type_2)

(* Procedure body *)

end
(continues on next page)
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(continued from previous page)

transition secondTransition (param_1: type_1)
(* Transition body *)

end

Immutable Contract Parameters

Immutable parameters are the contract’s initial parameters whose values are defined when the contract is deployed,
and cannot be modified afterwards.

Immutable parameters are declared using the following syntax:

(vname_1 : vtype_1,
vname_2 : vtype_2,
... )

Each declaration consists of a parameter name (an identifier) and followed by its type, separated by :. Multiple
parameter declarations are separated by ,. The initialization values for parameters are to be specified when the
contract is deployed.

Note: In addition to the explicitly declared immutable parameters, a Scilla contract has the following implicitly
declared immutable contract parameters

1. _this_address of type ByStr20, which is initialised to the address of the contract when the
contract is deployed.

2. _creation_block of type BNum, which is initialized to the block number at which the contract is
/ was deployed.

These parameters can be freely read within the implementation without having to dereference it using <- and cannot
be modified with :=.

Contract Constraints

A contract constraint is a requirement placed on the contract’s immutable parameters. A contract constraint provides a
way of establishing a contract invariant as soon as the contract is deployed, thus preventing the contract being deployed
with nonsensical parameters.

A contract constraint is declared using the following syntax:

with
...

=>

The constraint must be an expression of type Bool.

The constraint is checked when the contract is deployed. Contract deployment only succeeds if the constraint evaluates
to True. If it evaluates to False, then the deployment fails.

Here is a simple example of using contract constraints to make sure a contract with a limited period of functioning is
not deployed after that period:
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contract Mortal(end_of_life : BNum)
with

builtin blt _creation_block end_of_life
=>

The snippet above uses the implicit contract parameter _creation_block described in Immutable Contract Pa-
rameters.

Note: Declaring a contract constraint is optional. If no constraint is declared, then the constraint is assumed to simply
be True.

Mutable Fields

Mutable fields represent the mutable state (mutable variables) of the contract. They are declared after the immutable
parameters, with each declaration prefixed with the keyword field.

field vname_1 : vtype_1 = expr_1
field vname_2 : vtype_2 = expr_2
...

Each expression here is an initialiser for the field in question. The definitions complete the initial state of the contract,
at the time of creation. As the contract executes a transition, the values of these fields get modified.

Note: In addition to the explicitly declared mutable fields, a Scilla contract has an implicitly declared mutable field
_balance of type Uint128, which is initialised to 0 when the contract is deployed. The _balance field keeps the
amount of funds held by the contract, measured in QA (1 ZIL = 1,000,000,000,000 QA). This field can be freely read
within the implementation, but can only be modified by explicitly transferring funds to other accounts (using send),
or by accepting money from incoming messages (using accept).

Note: Both mutable fields and immutable parameters must be of a storable type:

• Messages, events and the special Unit type are not storable. All other primitive types like integers and strings
are storable.

• Function types are not storable.

• Complex types involving uninstantiated type variables are not storable.

• Maps and ADT are storable if the types of their subvalues are storable. For maps this means that the key type
and the value type must both be storable, and for ADTs this means that the type of every constructor argument
must be storable.

Units

The Zilliqa protocol supports three basic tokens units - ZIL, LI (10^-6 ZIL) and QA (10^-12 ZIL).

The base unit used in Scilla smart contracts is QA. Hence, when using money variables, it is important to attach the
trailing zeroes that are needed to represent it in QAs.
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(* fee is 1 QA *)
let fee = Uint128 1

(* fee is 1 LI *)
let fee = Uint128 1000000

(* fee is 1 ZIL *)
let fee = Uint128 1000000000000

Transitions

Transitions are a way to define how the state of the contract may change. The transitions of a contract define the public
interface for the contract, since transitions may be invoked by sending a message to the contract.

Transitions are defined with the keyword transition followed by the parameters to be passed. The definition ends
with the end keyword.

transition foo (vname_1 : vtype_1, vname_2 : vtype_2, ...)
...

end

where vname : vtype specifies the name and type of each parameter and multiple parameters are separated by
,.

Note: In addition to the parameters that are explicitly declared in the definition, each transition has the following
implicit parameters:

• _amount : Uint128 : Incoming amount, in QA (see section above on the units), sent by the sender. To
transfer the money from the sender to the contract, the transition must explicitly accept the money using the
accept instruction. The money transfer does not happen if the transition does not execute an accept.

• _sender : ByStr20 with end : The account address that triggered this transition. If the transition
was called by a contract account instead of a user account, then _sender is the address of the contract that
called this transition. In a chain call, this is the contract that sent the message invoking the current transition.

• _origin : ByStr20 with end : The account address that initiated the current transaction (which can
possibly be a chain call). This is always a user address, since contracts can never initiate transactions.

The type ByStr20 with end is an address type. Address types are explained in detail in the Addresses section.

Note: Transition parameters must be of a serialisable type.

Serialisable:

• Byte strings, integers, strings, and block numbers are serialisable.

• Addresses are serialisable only as ByStr20 values.

• ADT are serialisable if the types of their subvalues are serialisable. This means that the type of every constructor
argument must be serialisable.

Not Serialisable:

• Messages, events and the special Unit type are not serialisable.

• Function types and map types are not serialisable.

• Complex types involving uninstantiated type variables are not serialisable.
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Procedures

Procedures are another way to define now the state of the contract may change, but in contrast to transitions, procedures
are not part of the public interface of the contract, and may not be invoked by sending a message to the contract. The
only way to invoke a procedure is to call it from a transition or from another procedure.

Procedures are defined with the keyword procedure followed by the parameters to be passed. The definition ends
with the end keyword.

procedure foo (vname_1 : vtype_1, vname_2 : vtype_2, ...)
...

end

where vname : vtype specifies the name and type of each parameter and multiple parameters are separated by
,.

Once a procedure is defined it is available to be invoked from transitions and procedures in the rest of the contract file.
It is not possible to invoke a procedure from transition or procedure defined earlier in the contract, nor is it possible
for a procedure to call itself recursively.

Procedures are invoked using the name of the procedure followed by the actual arguments to the procedure:

v1 = ...;
v2 = ...;
foo v1 v2;

All arguments must be supplied when the procedure is invoked. A procedure does not return a result.

Note: The implicit transition parameters _sender, _origin and _amount are implicitly passed to all the pro-
cedures that a transition calls. There is therefore no need to declare those parameters explicitly when defining a
procedure.

Note: Procedure parameters cannot be (or contain) maps. If a procedure needs to access a map, it is therefore
necessary to either make the procedure directly access the contract field containing the map, or use a library function
to perform the necessary computations on the map.

Expressions

Expressions handle pure operations. Scilla contains the following types of expressions:

• let x = f : Give f the name x in the contract. The binding of x to f is global and extends to the end of the
contract. The following code fragment defines a constant one whose values is 1 of type Int32 throughout the
contract.

let one = Int32 1

• let x = f in expr : Bind f to the name x within expression expr. The binding here is local to expr
only. The following example binds the value of one to 1 of type Int32 and two to 2 of type Int32 in the
expression builtin add one two, which adds 1 to 2 and hence evaluates to 3 of type Int32.
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let sum =
let one = Int32 1 in
let two = Int32 2 in
builtin add one two

• { <entry>_1 ; <entry>_2 ... }: Message or event expression, where each entry has the following
form: b : x. Here b is an identifier and x a variable, whose value is bound to the identifier in the message.

• fun (x : T) => expr : A function that takes an input x of type T and returns the value to which expres-
sion expr evaluates.

• f x : Apply the function f to the parameter x.

• tfun 'T => expr : A type function that takes 'T as a parametric type and returns the value to which
expression expr evaluates. These are typically used to build library functions. See the implementation of fst
for an example.

Note: Shadowing of type variables is not currently allowed. E.g. tfun 'T => tfun 'T => expr is not
a valid expression.

• @x T: Apply the type function x to the type T. This specialises the type function x by instantiating the first type
variable of x to T. Type applications are typically used when a library function is about to be applied. See the
example application of fst for an example.

• builtin f x: Apply the built-in function f on x.

• match expression: Matches a bound variable with patterns and evaluates the expression in that clause. The
match expression is similar to the match expression in OCaml. The pattern to be matched can be an ADT
constructor (see ADTs) with subpatterns, a variable, or a wildcard _. An ADT constructor pattern matches
values constructed with the same constructor if the subpatterns match the corresponding subvalues. A variable
matches anything, and binds the variable to the value it matches in the expression of that clause. A wildcard
matches anything, but the value is then ignored.

match x with
| pattern_1 =>
expression_1 ...

| pattern_2 =>
expression_2 ...

| _ => (*Wildcard*)
expression ...

end

Note: A pattern-match must be exhaustive, i.e., every legal (type-safe) value of x must be matched by a pattern.
Additionally, every pattern must be reachable, i.e., for each pattern there must be a legal (type-safe) value of x
that matches that pattern, and which does not match any pattern preceding it.

Statements

Statements in Scilla are operations with effect, and hence not purely mathematical. Scilla contains the following types
of statements:

• x <- f : Fetch the value of the contract field f, and store it into the local variable x.
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• f := x : Update the mutable contract field f with the value of x. x may be a local variable, or another contract
field.

• x <- & BLOCKNUMBER : Fetch the value of the blockchain state variable BLOCKNUMBER, and store it into
the local variable x.

• x <- & c.f : Remote fetch. Fetch the value of the contract field f at address c, and store it into the local
variable x. Note that the type of c must be an address type containing the field f. See the secion on Addresses
for details on address types.

• x <- & c as t: Address type cast. Check whether c satisfies the type t. If it does, then store the value
Some v into x, where v is the same value as c, but of type t rather than the type of c. If it does not, then store
the value None into x. Note that c must be of type ByStr20 or an address type, and that t must be an address
type. See the section on Addresses for details on address types.

• v = e : Evaluate the expression e, and assign the value to the local variable v.

• p x y z : Invoke the procedure p with the arguments x, y and z. The number of arguments supplied must
correspond to the number of arguments the procedure takes.

• forall ls p : Invoke procedure p for each element in the list ls. p should be defined to take exactly one
argument whose type is equal to an element of the list ls.

• match : Pattern-matching at statement level:

match x with
| pattern_1 =>
statement_11;
statement_12;
...

| pattern_2 =>
statement_21;
statement_22;
...

| _ => (*Wildcard*)
statement_n1;
statement_n2;
...

end

• accept : Accept the QA of the message that invoked the transition. The amount is automatically added to
the _balance field of the contract. If a message contains QA, but the invoked transition does not accept the
money, the money is transferred back to the sender of the message. Not accepting the incoming amount (when
it is non-zero) is not an error.

• send and event : Communication with the blockchain. See the next section for details.

• In-place map operations : Operations on contract fields of type Map. See the Maps section for details.

A sequence of statements must be separated by semicolons ;:

transition T ()
statement_1;
statement_2;
...
statement_n

end

Notice that the final statement does not have a trailing ;, since ; is used to separate statements rather than terminate
them.
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Communication

A contract can communicate with other contract and user accounts through the send instruction:

• send msgs : Send a list of messages msgs.

The following code snippet defines a msg with four entries _tag, _recipient, _amount and param.

(*Assume contractAddress is the address of the contract being called and the
→˓contract contains the transition setHello*)
msg = { _tag : "setHello"; _recipient : contractAddress; _amount : Uint128 0;
→˓param : Uint32 0 };

A message passed to send must contain the mandatory fields _tag, _recipient and _amount.

The _recipient field (of type ByStr20) is the blockchain address that the message is to be sent to, and the
_amount field (of type Uint128) is the number of QA to be transferred to that account.

The _tag field (of type String) is only used when the value of the _recipient field is the address of a contract.
In this case, the value of the _tag field is the name of the transition that is to be invoked on the recipient contract. If
the recipient is a user account, the _tag field is ignored.

Note: To make it possible to transfer funds from a contract to both contracts and user accounts, use a standard
transition name as per ZRC-5, i.e. AddFunds. Please make sure to check if a contract to which you intend to send
funds is implemented in adherence with ZRC-5 convention.

In addition to the compulsory fields the message may contain other fields (of any type), such as param above. How-
ever, if the message recipient is a contract, the additional fields must have the same names and types as the parameters
of the transition being invoked on the recipient contract.

Here’s an example that sends multiple messages.

msg1 = { _tag : "setFoo"; _recipient : contractAddress1; _amount : Uint128 0;
→˓ foo : Uint32 101 };
msg2 = { _tag : "setBar"; _recipient : contractAddress2; _amount : Uint128 0;
→˓ bar : Uint32 100 };
msgs =
let nil = Nil {Message} in
let m1 = Cons {Message} msg1 nil in
Cons msg2 m1
;

send msgs

Note: A transition may execute a send at any point during execution (including during the execution of the proce-
dures it invokes), but the messages will not sent onwards until after the transition has finished. More details can be
found in the Chain Calls section.

Note: Messages sent to a user-defined library are ignored. They do not cause the transaction to fail, but they have no
effect.

A contract can also communicate to the outside world by emitting events. An event is a signal that gets stored on the
blockchain for everyone to see. If a user uses a client application invoke a transition on a contract, the client application
can listen for events that the contract may emit, and alert the user.
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• event e: Emit a message e as an event. The following code emits an event with name e_name.

e = { _eventname : "e_name"; <entry>_2 ; <entry>_3 };
event e

An emitted event must contain the compulsory field _eventname (of type String), and may contain other entries
as well. The value of the _eventname entry must be a string literal. All events with the same name must have the
same entry names and types.

Note: As with the sending of messages, a transition may emit events at any point during execution (including during
the execution of the procedures it invokes), but the event will not be visible on the blockchain before the transition has
finished. More details can be found in the Chain Calls section.

Run-time Errors

A transition may encounter a run-time error during execution, such as out-of-gas errors, integer overflows, or deliber-
ately thrown exceptions. A run-time error causes the transition to terminate abruptly, and the entire transaction to be
aborted. However, gas is still charged up until the point of the error.

The syntax for throwing an exception is similar to that of events and messages.

e = { _exception : "InvalidInput"; <entry>_2; <entry>_3 };
throw e

Unlike that for event or send, The argument to throw is optional and can be omitted. An empty throw will result
in an error that just conveys the location of where the throw happened without more information.

Note: If a run-time error occurs during the execution of a transition, then the entire transaction is aborted, and any
state changes in both the current and other contracts are rolled back. (The state of other contracts may have changed
due to a chain call).

In particular:

• All transferred funds are returned to their respective senders, even if an accept was executed before the error.

• The message queue is cleared, so that as yet unprocessed messages will no longer be sent onwards even if a
send was executed before the error.

• The event list is cleared, so that no events are emitted even if an event was executed before the error.

Gas is still charged for the transaction up until the point the run-time error occurs.

Note: Scilla does not have exception handlers. Throwing an exception always aborts the entire transaction.

Gas consumption in Scilla

Deploying contracts and executing transitions in them cost gas. The detailed cost mechanism is explained here.

The Nucleus Wallet page can be used to estimate gas costs for some transactions .
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3.4.2 Primitive Data Types & Operations

Integer Types

Scilla defines signed and unsigned integer types of 32, 64, 128, and 256 bits. These integer types can be specified with
the keywords IntX and UintX where X can be 32, 64, 128, or 256. For example, the type of an unsigned integer of
32 bits is Uint32.

The following code snippet declares a variable of type Uint32:

let x = Uint32 43

Scilla supports the following built-in operations on integers. Each operation takes two integers IntX / UintX (of the
same type) as arguments. Exceptions are pow whose second argument is always Uint32 and isqrt which takes in
a single UintX argument.

• builtin eq i1 i2 : Is i1 equal to i2? Returns a Bool.

• builtin add i1 i2: Add integer values i1 and i2. Returns an integer of the same type.

• builtin sub i1 i2: Subtract i2 from i1. Returns an integer of the same type.

• builtin mul i1 i2: Integer product of i1 and i2. Returns an integer of the same type.

• builtin div i1 i2: Integer division of i1 by i2. Returns an integer of the same type.

• builtin rem i1 i2: The remainder of integer division of i1 by i2. Returns an integer of the same type.

• builtin lt i1 i2: Is i1 less than i2? Returns a Bool.

• builtin pow i1 i2: i1 raised to the power of i2. Returns an integer of the same type as i1.

• builtin isqrt i: Computes the integer square root of i, i.e. the largest integer j such that j * j <=
i. Returns an integer of the same type as i.

• builtin to_nat i1: Convert a value of type Uint32 to the equivalent value of type Nat.

• builtin to_(u)int32/64/128/256: Convert a UintX / IntX or a String (that represents a decimal
number) value to the result of Option UintX or Option IntX type. Returns Some res if the conversion
succeeded and None otherwise. The conversion may fail when

– there is not enough bits to represent the result;

– when converting a negative integer (or a string representing a negative integer) into a value of an unsigned
type;

– the input string cannot be parsed as an integer.

Here is the list of concrete conversion builtins for better discoverability: to_int32, to_int64,
to_int128, to_int256, to_uint32, to_uint64, to_uint128, to_uint256.

Addition, subtraction, multiplication, pow, division and remainder operations may raise integer overflow, underflow
and division_by_zero errors. This aborts the execution of the current transition and unrolls all the state changes made
so far.

Note: Variables related to blockchain money, such as the _amount entry of a message or the _balance field of a
contract, are of type Uint128.
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Strings

String literals in Scilla are expressed using a sequence of characters enclosed in double quotes. Variables can be
declared by specifying using keyword String.

The following code snippet declares a variable of type String:

let x = "Hello"

Scilla supports the following built-in operations on strings:

• builtin eq s1 s2 : Is s1 equal to s2? Returns a Bool. s1 and s2 must be of type String.

• builtin concat s1 s2 : Concatenate string s1 with string s2. Returns a String.

• builtin substr s idx len : Extract the substring of s of length len starting from position idx. idx
and len must be of type Uint32. Character indices in strings start from 0. Returns a String or fails with a
runtime error if the combination of the input parameters results in an invalid substring.

• builtin to_string x: Convert x to a string literal. Valid types of x are IntX, UintX, ByStrX and
ByStr. Returns a String. Byte strings are converted to textual hexadecimal representation.

• builtin strlen s : Calculate the length of s (of type String). Returns a Uint32.

• builtin strrev s : Returns the reverse of the string s.

• builtin to_ascii h : Reinterprets a byte string (ByStr or ByStrX) as a printable ASCII string and
returns an equivalent String value. If the byte string contains any non-printable characters, a runtime error is
raised.

Byte strings

Byte strings in Scilla are represented using the types ByStr and ByStrX, where X is a number. ByStr refers to
a byte string of arbitrary length, whereas for any X, ByStrX refers to a byte string of fixed length X. For instance,
ByStr20 is the type of byte strings of length 20, ByStr32 is the type of byte strings of length 32, and so on.

Byte strings literals in Scilla are written using hexadecimal characters prefixed with 0x. Note that it takes 2 hexadec-
imal characters to specify 1 byte, so a ByStrX literal requires 2 * X hexadecimal characters. The following code
snippet declares a variable of type ByStr32:

let x = 0x123456789012345678901234567890123456789012345678901234567890abff

Scilla supports the following built-in operations for computing on and converting between byte string types:

• builtin to_bystr h : Convert a value h of type ByStrX (for some known X) to one of arbitrary length
of type ByStr.

• builtin to_bystrX h : (note that X is a numerical paratemeter here and not a part of the builtin name,
see the examples below)

– if the argument h is of type ByStr: Convert an arbitrary size byte string value h (of type ByStr) to a
fixed sized byte string of type ByStrX, with length X. The result is of type Option ByStrX in this
case: the builtin returns Some res if the length of the argument is equal to X and None otherwise. E.g.
builtin to_bystr42 bs returns Some bs' if the length of bs is 42.

– if the argument h is of type Uint(32/64/128/256): Convert unsigned integers to their big endian
byte representation, returning a ByStr(4/8/16/32) value (notice it’s not an optional type in this case).
For instance, builtin to_bystr4 x (this only typechecks if x has type Uint32) or builtin
to_bystr16 x (this only typechecks if x is of type Uint128).
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• builtin to_uint(32/64/128/256) h : Convert a fixed sized byte string value h to an equivalent
value of type Uint(32/64/128/256). h must be of type ByStrX for some known X less than or equal to
(4/8/16/32). A big-endian representation is assumed.

• builtin concat h1 h2: Concatenate byte strings h1 and h2.

– If h1 has type ByStrX and h2 has type ByStrY, then the result will have type ByStr(X+Y).

– If the arguments are of type ByStr, the result is also of type ByStr.

• builtin strlen h: The length of byte string (ByStr) h. Returns Uint32.

• eq a1 a2: Is a1 equal to a2? Returns a Bool.

Addresses

Addresses on the Zilliqa network are strings of 20 bytes, and raw addresses are therefore represented by values of type
ByStr20.

Additionally, Scilla supports structured address types, i.e., types that are equivalent to ByStr20, but which, when in-
terpreted as an address on the network, provide additional information about the contents of that address. Address types
are written using the form ByStr20 with <address contents> end, where <address contents>
refers to what the address contains.

The hierarchy of address types is as follows:

• ByStr20: A raw byte string of length 20. The type does not provide any guarantee as to what is located at
the address. (Generally, ByStr20 is not regarded as an address type, because it can refer to any byte string of
length 20, whether it is meant to represent an address or not.)

• ByStr20 with end: A ByStr20 which, when interpreted as a network address, refers to an address that
is in use. An address is in use if it either contains a contract or a library, or if the balance or the nonce of the
address is greater than 0. (The balance of an address is the number of Qa held by the address account. The
nonce of an address is the number of transactions that have been initiated from that address).

• ByStr20 with contract end: A ByStr20 which, when interpreted as a network address, refers to the
address of a contract.

• ByStr20 with contract field f1 : t1, field f2 : t2, ... end: A ByStr20
which, when interpreted as a network address, refers to the address of a contract containing the mutable fields
f1 of type t1, f2 of type t2, and so on. The contract in question may define more fields than the ones
specified in the type, but the fields specified in the type must be defined in the contract.

Note: All addresses in use, and therefore by extension all contract addresses, implicitly define a mutable field
_balance : Uint128. For user accounts the _balance field refers to the account balance.

Note: Address types specifying immutable parameters or transitions of a contract are not supported.

Address subtyping

The hierarchy of address types defines a subtype relation:

• Any address type ByStr20 with ... end is as subtype of ByStr20. This means that any address type
can be used in place of a ByStr20, e.g., for comparing equality using builtin eq, or as the _recipient
value of a message.
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• Any contract address type ByStr20 with contract ... end is a subtype of ByStr20 with end.

• Any contract address type specifying explict fields ByStr20 with contract field f1 : t11,
field f2 : t12, ... end is a subtype of a contract address type specifying a subset of those
fields ByStr20 with contract field f1 : t21, field f2 : t22, ... end, provided
that t11 is a subtype of t21, t12 is a subtype of t22, and so on for each field specified in both contract types.

• For ADTs with type parameters such as List or Option, an ADT T t1 t2 ... is a subtype of S s1 s2
... if T is the same as S, and t1 is a subtype of s1, t2 is a subtype of s2, and so on.

• A map with key type kt1 and value type vt1 is a subtype of another map with key type kt2 and value type
vt2 if kt1 is a subtype of kt2 and vt1 is a subtype of vt2.

Dynamic typecheck of addresses

In general, address types cannot be fully typechecked statically by the Scilla checker. This can happen, e.g., because
a byte string is a transition parameter and thus not known statically, or because a byte string refers to an address that
does not currently contain a contract, but which might contain a contract in the future.

For this reason immutable parameters (i.e., contract parameters supplied when the contract is deployed) and transition
parameters of address types are typechecked dynamically, when the actual byte string is known.

For example, a contract might specify an immutable field init_owner as follows:

contract MyContract (init_owner : ByStr20 with end)

When the contract is deployed, the byte string supplied as init_owner is looked up as an address on the blockchain,
and if the contents of that address matches the address type (in this case that the address is in use either by a user or
by a contract), then deployment continues, and init_owner can be treated as a ByStr20 with end throughout
the contract.

Similarly, a transition might specify a parameter token_contract as follows:

transition Transfer (
token_contract : ByStr20 with contract

field balances : Map ByStr20 Uint128
end

)

When the transition is invoked, the byte string supplied as the token_contract parameter is looked up as an
address on the blockchain, and if the contents of that address matches the address type (in this case that the address
contains a contract with a field balances of a type that is assignable to Map ByStr20 Uint128), then the transi-
tion parameter is initialised successfully, and token_contract can be treated as a ByStr20 with contract
field balances : Map ByStr20 Uint128 end throughout this transition invocation.

In either case, if the contents of the address does not match the specified type, then the dynamic typecheck is un-
successful, causing deployment (for failed immutable parameters) or transition invocation (for transition parameters)
to fail. A failed dynamic typecheck is considered a run-time error, causing the current transaction to abort. (For the
purposes of dynamic typechecks of immutable fields the deployment of a contract is considered a transaction).

It is also possible to perform a dynamic typecheck as a statement, using the address type cast construct:

x <- & c as ByStr20 with ... end

If c satisfies the address type, then x is bound to Some v, where v is the same value as c but is treated as having the
address type specified in cast. On the other hand, if c does not satisfy the address type, then x is bound to None.

The advantage of using an address type cast instead of a dynamic typecheck of transition parameters is that a type cast
does not cause a run-time failure in case of a failed cast - a failed cast just results in a None value.
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The disadvantage of address type casts is that they cost more gas. The type cast itself costs the same as a typecheck of
a transition parameter, but one then needs to pattern-match on the result of the type cast, which costs additional gas.

Note: It is not possible to specify a ByStr20 literal and have it interpreted as an address. In other words, the
following code snippet will result in a static type error:

let x : ByStr20 with end = 0x1234567890123456789012345678901234567890

The only ways for a byte string to be validated against an address type is either to pass it as the value of an immutable
field or as a transition parameter of the appropriate type, or to perform a cast statement to the appropriate type.

Remote fetches

To perform a remote fetch x <- & c.f, the type of c must be some address type declaring the field f. For in-
stance, if c has the type ByStr20 with contract field paused : Bool end, then the value of the
field paused at address c can be fetched using the statement x <- & c.paused, whereas it is not possible to
fetch the value of an undeclared field (e.g., admin) of c, even if the contract at address c does actually contain a field
admin. To be able to fetch the value of the admin field, the type of c must contain the admin field as well, e.g,
ByStr20 with contract field paused : Bool, field admin : ByStr20 end

Remote fetches of map fields can be performed using in-place operations in the same way as for locally declared map
fields, i.e., x <- & c.m[key], x <- & c.m[key1][key2], x <- & exists m[key], etc. As with re-
mote fetches of map fields, the remote map field must be declared in the type of c, e.g., ByStr20 with contract
field m : Map Uint128 (Map Uint32 Bool) end.

Writing to a remote field is not allowed.

Crypto Built-ins

A hash in Scilla is declared using the data type ByStr32. A ByStr32 represents a hexadecimal byte string of 32
bytes (64 hexadecimal characters). A ByStr32 literal is prefixed with 0x.

Scilla supports the following built-in operations on hashes and other cryptographic primitives, including byte se-
quences.

• builtin eq h1 h2: Is h1 equal to h2? Both inputs are of the same type ByStrX (or both are of type
ByStr). Returns a Bool.

• builtin sha256hash x : Convert x of any non-closure type to its SHA256 hash. Returns a ByStr32.

• builtin keccak256hash x: Convert x of any non-closure type to its Keccak256 hash. Returns a
ByStr32.

• builtin ripemd160hash x: Convert x of any non-closure type to its RIPEMD-160 hash. Returns a
ByStr20.

• builtin substr h idx len : Extract the sub-byte-string of h of length len starting from position idx.
idx and len must be of type Uint32. Character indices in byte strings start from 0. Returns a ByStr or fails
with a runtime error.

• builtin strrev h : Reverse byte string (either ByStr or ByStrX). Returns a value of the same type as
the argument.

• builtin schnorr_verify pubk data sig : Verify a signature sig of type ByStr64 against a byte
string data of type ByStr with the Schnorr public key pubk of type ByStr33.

56 Chapter 3. Contents



scilla-doc Documentation, Release 0.11.0

• builtin schnorr_get_address pubk: Given a public key of type ByStr33, returns the ByStr20
Zilliqa address that corresponds to that public key.

• builtin ecdsa_verify pubk data sig : Verify a signature sig of type ByStr64 against a byte
string data of type ByStr with the ECDSA public key pubk of type ByStr33.

• builtin ecdsa_recover_pk data sig recid : Recover data (of type ByStr), having signature
sig (of type ByStr64) and a Uint32 recovery integer recid, whose value is restricted to be 0, 1, 2 or 3,
the uncompressed public key, returning a ByStr65 value.

• builtin bech32_to_bystr20 prefix addr. The builtin takes a network specific prefix ("zil" /
"tzil") of type String and an input bech32 string (of type String) and if the inputs are valid, converts it
to a raw byte address (ByStr20). The return type is Option ByStr20. On success, Some addr is returned
and on invalid inputs None is returned.

• builtin bystr20_to_bech32 prefix addr. The builtin takes a network specific prefix ("zil" /
"tzil") of type String and an input ByStr20 address, and if the inputs are valid, converts it to a bech32
address. The return type is Option String. On success, Some addr is returned and on invalid inputs
None is returned.

• builtin alt_bn128_G1_add p1 p2. The builtin takes two points p1, p2 on the alt_bn128 curve
and returns the sum of the points in the underlying group G1. The input points are each a Pair {Bystr32
ByStr32}. The return type is Option (Pair (ByStr32) (ByStr32)). On success, Some point
is returned and on invalid inputs None is returned. Each scalar component ByStr32 of a point is a big-endian
encoded number. Also see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md

• builtin alt_bn128_G1_mul p s. The builtin takes a point p on the alt_bn128 curve (as described
previously), and a scalar ByStr32 value s and returns the sum of the point p taken s times. The return type is
Option (Pair (ByStr32) (ByStr32)). On success, Some point is returned and on invalid inputs
None is returned.

• builtin alt_bn128_G1_neg p. The builtin takes a point p on the alt_bn128 curve and returns
the negation of the point. The result is Option (Pair (ByStr32) (ByStr32)). On success, Some
point is returned and on invalid inputs None is returned.

• builtin alt_bn128_pairing_product pairs. This builtin takes in a list of pairs pairs of points.
Each pair consists of a point in group G1 (Pair {Bystr32 ByStr32}) as the first component and a point
in group G2 (Pair {Bystr64 ByStr64}) as the second component. Hence the argument has type List
{(Pair (Pair ByStr32 ByStr32) (Pair ByStr64 ByStr64)) }. The function applies a pair-
ing function on each point to check for equality and returns True or False depending on whether the pairing
check succeeds or fails. Also see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md

Maps

A value of type Map kt vt provides a key-value store where kt is the type of keys and vt is the type of values
(in some other programming languages datatypes like Scilla’s Map are called associative arrays, symbol tables, or
dictionaries). The type of map keys kt may be any one of the following primitive types: String, IntX, UintX,
ByStrX, ByStr or BNum. The type of values vt may be any type except a function type, this includes both builtin
and user-defined algebraic datatypes.

Since compound types are not supported as map key types, the way to model, e.g. association of pairs of values to
another value is by using nested maps. For instance, if one wants to associate with an account and a particular trusted
user some money limit the trusted user is allowed to spend on behalf of the account, one can use the following nested
map:

field operators: Map ByStr20 (Map ByStr20 Uint128)
= Emp ByStr20 (Map ByStr20 Unit)
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The first and the second key are of type ByStr20 and represent accounts and the trusted users correspondingly. We
represent the money limits with the Uint128 type.

Scilla supports a number of operations on map, which can be categorized as

• in-place operations which modify field maps without making any copies, hence they belong to the imperative
fragment of Scilla. These operations are efficient and recommended to use in almost all of the cases;

• functional map operations are intended to use in pure functions, e.g. when designing a Scilla library, because
they never modify the original map they are called on. These operations may incur significant performance
overhead as some of them create a new (modified) copy of the input map. Syntactically, the copying operations
are all prefixed with builtin keyword (see below). Note that to call the functional builtins on a field map one
first needs to make a copy of the field map using a command like so: map_copy <- field_map, which
results in gas consumption proportional to the size of field_map.

In-place map operations

• m[k] := v: In-place insert. Inserts a key k bound to a value v into a map m. If m already contains key k,
the old value bound to k gets replaced by v in the map. m must refer to a mutable field in the current contract.
Insertion into nested maps is supported with the syntax m[k1][k2][...] := v. If the intermediate keys
do not exist in the nested maps, they are freshly created along with the map values they are associated with.

• x <- m[k]: In-place local fetch. Fetches the value associated with the key k in the map m. m must refer to a
mutable field in the current contract. If k has an associated value v in m, then the results of the fetch is Some v
(see the Option type below), otherwise the result is None. After the fetch, the result gets bound to the local
variable x. Fetching from nested maps is supported with the syntax x <- m[k1][k2][...]. If one or more
of the intermediate keys do not exist in the corresponding map, the result of the fetch is None.

• x <- & c.m[k]: In-place remote fetch. Works in the same way as the local fetch operation, except that m
must refer to a mutable field in the contract at address c.

• x <- exists m[k]: In-place local key existence check. m must refer to a mutable field in the current
contract. If k has an associated value in the map m then the result (of type Bool) of the check is True,
otherwise the result is False. After the check, the result gets bound to the local variable x. Existence checks
through nested maps is supported with the syntax x <- exists m[k1][k2][...]. If one or more of the
intermediate keys do not exist in the corresponding map, the result is False.

• b <- & exists c.m[k]: In-place remote key existence check. Works in the same way as the local key
existence check, except that m must refer to a mutable field in the contract at address c.

• delete m[k]: In-place remove. Removes a key k and its associated value from the map m. The identi-
fier m must refer to a mutable field in the current contract. Removal from nested maps is supported with the
syntax delete m[k1][k2][...]. If one or more of the intermediate keys do not exist in the correspond-
ing map, then the operation has no effect. Note that in the case of a nested removal delete m[k1][...
][kn-1][kn], only the key-value association of kn is removed. The key-value bindings of k1 to kn-1 will
remain in the map.

Functional map operations

• builtin put m k v: Insert a key k bound to a value v into a map m. Returns a new map which is a copy
of the m but with k associated with v. If m already contains key k, the old value bound to k gets replaced by v
in the result map. The value of m is unchanged. The put function is typically used in library functions. Note
that put makes a copy of m before inserting the key-value pair.

• builtin get m k: Fetch the value associated with the key k in the map m. Returns an optional value (see
the Option type below) – if k has an associated value v in m, then the result is Some v, otherwise the result
is None. The get function is typically used in library functions.
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• builtin contains m k: Is the key k associated with a value in the map m? Returns a Bool. The
contains function is typically used in library functions.

• builtin remove m k: Remove a key k and its associated value from the map m. Returns a new map which
is a copy of m but with k being unassociated with a value. The value of m is unchanged. If m does not contain key
k the remove function simply returns a copy of m with no indication that k is missing. The remove function
is typically used in library functions. Note that remove makes a copy of m before removing the key-value pair.

• builtin to_list m: Convert a map m to a List (Pair kt vt) where kt and vt are key and value
types, respectively (see the List type below).

• builtin size m: Return the number of bindings in map m. The result type is Uint32. Calling this builtin
consumes a small constant amount of gas. But calling it directly on a field map is not supported, meaning that
getting the size of field maps while avoiding expensive copying needs some more scaffolding, which you can
find out about in the Field map size section.

Note: Builtin functions put and remove return a new map, which is a possibly modified copy of the original map.
This may affect performance!

Note: Empty maps can be constructed using the Emp keyword, specifying the key and value types as its arguments.
This is the way to initialise Map fields to be empty. For example field foomap : Map Uint128 String
= Emp Uint128 String declares a Map field with keys of type Uint128 and values of type String, which is
initialized to be the empty map.

Block Numbers

Block numbers have a dedicated type BNum in Scilla. Variables of this type are specified with the keyword BNum
followed by an integer value (for example BNum 101).

Scilla supports the following built-in operations on block numbers:

• eq b1 b2: Is b1 equal to b2? Returns a Bool.

• blt b1 b2: Is b1 less than b2? Returns a Bool.

• badd b1 i1: Add i1 of type UintX to b1 of type BNum. Returns a BNum.

• bsub b1 b2: Subtract b2 from b1, both of type BNum. Returns an Int256.

3.4.3 Algebraic Datatypes

An algebraic datatype (ADT) is a composite type used commonly in functional programming. Each ADT is defined
as a set of constructors. Each constructor takes a set of arguments of certain types.

Scilla is equipped with a number of built-in ADTs, which are described below. Additionally, Scilla allows users to
define their own ADTs.

Boolean

Boolean values are specified using the type Bool. The Bool ADT has two constructors True and False, neither of
which take any arguments. Thus the following code fragment constructs a value of type Bool by using the constructor
True:
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x = True

Option

Optional values are specified using the type Option t, where t is some type. The Option ADT has two construc-
tors:

• Some represents the presence of a value. The Some constructor takes one argument (the value, of type t).

• None represents the absence of a value. The None constructor takes no arguments.

The following code snippet constructs two optional values. The first value is an absent string value, constructed using
None. The second value is the Int32 value 10, which, because the value is present, is constructed using Some:

let none_value = None {String}

let some_value =
let ten = Int32 10 in
Some {Int32} ten

Optional values are useful for initialising fields where the value is not yet known:

field empty_bool : Option Bool = None {Bool}

Optional values are also useful for functions that might not have a result, such as the get function for maps:

getValue = builtin get m _sender;
match getValue with
| Some v =>

(* _sender was associated with v in m *)
v = v + v;
...

| None =>
(* _sender was not associated with a value in m *)
...

end

List

Lists of values are specified using the type List t, where t is some type. The List ADT has two constructors:

• Nil represents an empty list. The Nil constructor takes no arguments.

• Cons represents a non-empty list. The Cons constructor takes two arguments: The first element of the list (of
type t), and another list (of type List t) representing the rest of the list.

All elements in a list must be of the same type t. In other words, two values of different types cannot be added to the
same list.

The following example shows how to build a list of Int32 values. First we create an empty list using the Nil
constructor. We then add four other values one by one using the Cons constructor. Notice how the list is constructed
backwards by adding the last element, then the second-to-last element, and so on, so that the final list is [11; 10;
2; 1]:
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let one = Int32 1 in
let two = Int32 2 in
let ten = Int32 10 in
let eleven = Int32 11 in

let nil = Nil {Int32} in
let l1 = Cons {Int32} one nil in
let l2 = Cons {Int32} two l1 in
let l3 = Cons {Int32} ten l2 in
Cons {Int32} eleven l3

Scilla provides three structural recursion primitives for lists, which can be used to traverse all the elements of any list:

• list_foldl: ('B -> 'A -> 'B) -> 'B -> (List 'A) -> 'B : Recursively process the ele-
ments in a list from front to back, while keeping track of an accumulator (which can be thought of as a running
total). list_foldl takes three arguments, which all depend on the two type variables 'A and 'B:

– The function processing the elements. This function takes two arguments. The first argument is the current
value of the accumulator (of type 'B). The second argument is the next list element to be processed (of
type 'A). The result of the function is the next value of the accumulator (of type 'B).

– The initial value of the accumulator (of type 'B).

– The list of elements to be processed (of type (List 'A)).

The result of applying list_foldl is the value of the accumulator (of type 'B) when all list elements have
been processed.

• list_foldr: ('A -> 'B -> 'B) -> 'B -> (List 'A) -> 'B : Similar to list_foldl,
except the list elements are processed from back to front. Notice also that the processing function takes the
list element and the accumulator in the opposite order from the order in list_foldl.

• list_foldk: ('B -> 'A -> ('B -> 'B) -> 'B) -> 'B -> (List 'A) -> 'B : Recur-
sively process the elements in a list according to a folding function, while keeping track of an accumulator.
list_foldk is a more general version of the left and right folds, which, by the way, can be both implemented
in terms of it. list_foldk takes three arguments, which all depend on the two type variables 'A and 'B:

– The function describing the fold step. This function takes three arguments. The first argument is the current
value of the accumulator (of type 'B). The second argument is the next list element to be processed (of type
'A). The third argument represents the postponed recursive call (of type 'B -> 'B). The result of the
function is the next value of the accumulator (of type 'B). The computation terminates if the programmer
does not invoke the postponed recursive call. This is a major difference between list_foldk and the
left and right folds which process their input lists from the beginning to the end unconditionally.

– The initial value of the accumulator z (of type 'B).

– The list of elements to be processed (of type List 'A).

Note: When an ADT takes type arguments (such as List 'A), and occurs inside a bigger type (such as the type of
list_foldl), the ADT and its arguments must be grouped using parentheses ( ). This is the case even when the
ADT occurs as the only argument to another ADT. For instance, when constructing an empty list of optional values of
type Int32, one must instantiate the list type using the syntax Nil {(Option Int32)}.

To further illustrate the List type in Scilla, we show a small example using list_foldl to count the number of
elements in a list. For an example of list_foldk see list_find.

1 let list_length : forall 'A. List 'A -> Uint32 =
2 tfun 'A =>

(continues on next page)
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(continued from previous page)

3 fun (l : List 'A) =>
4 let foldl = @list_foldl 'A Uint32 in
5 let init = Uint32 0 in
6 let one = Uint32 1 in
7 let iter =
8 fun (z : Uint32) =>
9 fun (h : 'A) =>

10 builtin add one z
11 in
12 foldl iter init l

list_length defines a function that takes a type argument 'A, and a normal (value) argument l of type List 'A.

'A is a type variable which must be instantiated by the code that intends to use list_length. The type variable is
specified in line 2.

In line 4 we instantiate the types for list_foldl. Since we are traversing a list of values of type 'A, we pass 'A as
the first type argument to list_foldl, and since we are calculating the length of the list (a non-negative integer),
we pass Uint32 as the accumulator type.

In line 5 we define the initial value of the accumulator. Since an empty list has length 0, the initial value of the
accumulator is 0 (of type Uint32, to match the accumulator type).

In lines 6-10 we specify the processing function iter, which takes the current accumulator value z and the current
list element h. In this case the processing function ignores the list element, and increments the accumulator by 1.
When all elements in the list have been processed, the accumulator will have been incremented as many times as there
are elements in the list, and hence the final value of the accumulator will be equal to the length of the list.

In line 12 we apply the type-instantiated version of list_foldl from line 4 to the processing function, the initial
accumulator, and the list of values.

Common utilities for the List type (including list_length) are provided in the ListUtils library as part of
the standard library distribution for Scilla.

Pair

Pairs of values are specified using the type Pair t1 t2, where t1 and t2 are types. The Pair ADT has one
constructor:

• Pair represents a pair of values. The Pair constructor takes two arguments, namely the two values of the
pair, of types t1 and t2, respectively.

Note: Pair is both the name of a type and the name of a constructor of that type. An ADT and a constructor typically
only share their names when the constructor is the only constructor of the ADT.

A Pair value may contain values of different types. In other words, t1 and t2 need not be the same type.

Below is an example where we declare a field pp of type Pair String Uint32, which we then initialise by
constructing a pair consisting of a value of type String and a value of type Uint32:

field pp: Pair String Uint32 =
let s1 = "Hello" in
let num = Uint32 2 in
Pair {String Uint32} s1 num
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Notice the difference in how we specify the type of the field as Pair A' B', and how we specify the types of values
given to the constructor as Pair { A' B' }.

We now illustrate how pattern matching can be used to extract the first element from a Pair. The function fst shown
below is defined in the PairUtils library of the Scilla standard library.

let fst =
tfun 'A =>
tfun 'B =>
fun (p : Pair ('A) ('B)) =>
match p with
| Pair a b => a
end

To apply fst to one must first instantiate the type variables 'A and 'B, which is done as follows:

p <- pp;
fst_specialised = @fst String Uint32;
p_fst = fst_specialised p

The value associated with the identifier p_fst will be the string "Hello".

Note: Using Pair is generally discouraged. Instead, the programmer should define an ADT which is specialised to
the particular type of pairs that is needed in the particular use case. See the section on User-defined ADTs below.

Nat

Peano numbers are specified using the type Nat. The Nat ADT has two constructors:

• Zero represents the number 0. The Zero constructor takes no arguments.

• Succ represents the successor of another Peano number. The Succ constructor takes one argument (of type
Nat) which represents the Peano number that is one less than the current number.

The following code shows how to build the Peano number corresponding to the integer 3:

let three =
let zero = Zero in
let one = Succ zero in
let two = Succ one in
Succ two

Scilla provides two structural recursion primitives for Peano numbers, which can be used to traverse all the Peano
numbers from a given Nat down to Zero:

• nat_fold: ('A -> Nat -> 'A) -> 'A -> Nat -> 'A: Recursively process the succession of
numbers from a Nat down to Zero, while keeping track of an accumulator. nat_fold takes three arguments,
two of which depend on the type variable 'A:

– The function processing the numbers. This function takes two arguments. The first argument is the current
value of the accumulator (of type 'A). The second argument is the next Peano number to be processed (of
type Nat). Incidentally, the next number to be processed is the predecessor of the current number being
processed. The result of the function is the next value of the accumulator (of type 'A).

– The initial value of the accumulator (of type 'A).

– The first Peano number to be processed (of type Nat).
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The result of applying nat_fold is the value of the accumulator (of type 'A) when all Peano numbers down
to Zero have been processed.

• nat_foldk: ('A -> Nat -> ('A -> 'A) -> 'A) -> 'A -> Nat -> 'A: Recursively pro-
cess the Peano numbers down to zero according to a folding function, while keeping track of an accumulator.
nat_foldk is a more general version of the left fold allowing for early termination. It takes three arguments,
two depending on the type variable 'A.

– The function describing the fold step. This function takes three arguments. The first argument is the current
value of the accumulator (of type 'A). The second argument is the predecessor of the Peano number being
processed (of type Nat). The third argument represents the postponed recursive call (of type 'A -> 'A).
The result of the function is the next value of the accumulator (of type 'A). The computation terminates if
the programmer does not invoke the postponed recursive call. Left folds inevitably process the whole list
whereas nat_foldk can differ in this regard.

– The initial value of the accumulator z (of type 'A).

– The Peano number to be processed (of type Nat).

To better understand nat_foldk, we explain how nat_eq works. nat_eq checks to see if two Peano numbers are
equivalent. Below is the program, with line numbers and an explanation.

1 let nat_eq : Nat -> Nat -> Bool =
2 fun (n : Nat) => fun (m : Nat) =>
3 let foldk = @nat_foldk Nat in
4 let iter =
5 fun (n : Nat) => fun (ignore : Nat) => fun (recurse : Nat -> Nat) =>
6 match n with
7 | Succ n_pred => recurse n_pred
8 | Zero => m (* m is not zero in this context *)
9 end in

10 let remaining = foldk iter n m in
11 match remaining with
12 | Zero => True
13 | _ => False
14 end

Line 2 specifies that we take two Peano numbers m and n. Line 3 instantiates the type of nat_foldk, we give it Nat
because we will be passing a Nat value as the fold accumulator.

Lines 4 to 8 specify the fold description, this is the first argument that nat_foldk takes usually of type 'A -> Nat
-> ('A -> 'A) -> 'A but we have specified that 'A is Nat in this case. Our function takes the accumulator n
and ignore : Nat is the predecessor of the number being processed which we don’t care about in this particular
case.

Essentially, we start accumulating the end result from n and iterate at most m times (see line 10), decrementing both n
and m at each recursive step (lines 4 - 9). The m variable gets decremented implicitly because this is how nat_foldk
works under the hood. And we explicitly decrement n using pattern matching (lines 6, 7). To continue iteratively
decrement both m and n we use recurse on line 7. If the two input numbers are equal, we will get the accumulator
(n) equal to zero in the end. We call the final value of the accumulator remaining on line 10. At the end we will
be checking to see if our accumulator ended up at Zero to say if the input numbers are equal. The last lines, return
True when the result of the fold is Zero and False otherwise as described above.

In the case when accumulator n reaches zero (line 8) while m still has not been fully processed, we stop iteration
(hence no recurse on that line) and return a non-zero natural number to indicate inequality. Any number (e.g.
Succ Zero) would do, but to make the code concise we return the original input number m because we know iter
gets called on m only if it’s not zero.

In the symmetrical case when m reaches zero while the accumulator n is still strictly positive, we indicate inequality,
because remaining gets this final value of n.
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User-defined ADTs

In addition to the built-in ADTs described above, Scilla supports user-defined ADTs.

ADT definitions may only occur in the library parts of a program, either in the library part of the contract, or in
an imported library. An ADT definition is in scope in the entire library in which it is defined, except that an ADT
definition may only refer to other ADT definitions defined earlier in the same library, or in imported libraries. In
particular, an ADT definition may not refer to itself in an inductive/recursive manner.

Each ADT defines a set of constructors. Each constructor specifies a number of types which corresponds to the number
and types of arguments that the constructor takes. A constructor may be specified as taking no arguments.

The ADTs of a contract must have distinct names, and the set of all constructors of all ADTs in a contract must also
have distinct names. Both the ADT and constructor names must begin with a capital letter (‘A’ - ‘Z’). However, a
constructor and an ADT may have the same name, as is the case with the Pair type whose only constructor is also
called Pair.

As an example of user-defined ADTs, consider the following type declarations from a contract implementing a chess-
like game called Shogi or Japanese Chess (https://en.wikipedia.org/wiki/Shogi). When in turn, a player can choose to
either move one of his pieces, place a previously captured piece back onto the board, or resign and award the victory
to the opponent.

The pieces of the game can be defined using the following type Piece:

type Piece =
| King
| GoldGeneral
| SilverGeneral
| Knight
| Lance
| Pawn
| Rook
| Bishop

Each of the constructors represents a type of piece in the game. None of the constructors take any arguments.

The board is represented as a set of squares, where each square has two coordinates:

type Square =
| Square of Uint32 Uint32

The type Square is an example of a type where a constructor has the same name as the type. This usually happens
when a type has only one constructor. The constructor Square takes two arguments, both of type Uint32, which
are the coordinates (the row and the column) of the square on the board.

Similar to the definition of the type Piece, we can define the type of direction of movement using a constructor for
each of the legal directions as follows:

type Direction =
| East
| SouthEast
| South
| SouthWest
| West
| NorthWest
| North
| NorthEast

We are now in a position to define the type of possible actions that a user may choose to perform when in turn:
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type Action =
| Move of Square Direction Uint32 Bool
| Place of Piece Square
| Resign

If a player chooses to move a piece, she should use the constructor Move, and provide four arguments:

• An argument of type Square, indicating the current position of the piece she wants to move.

• An argument of type Direction, indicating the direction of movement.

• An argument of type Uint32, indicating the distance the piece should move.

• An argument of type Bool, indicating whether the moved piece should be promoted after being moved.

If instead the player chooses to place a previously captured piece back onto the board, she should use the constructor
Place, and provide two arguments:

• An argument of type Piece, indicating which piece to place on the board.

• An argument of type Square, indicating the position the piece should be placed in.

Finally, if the player chooses to resign and award the victory to her opponent, she should use the constructor Resign.
Since Resign does not take any arguments, no arguments should be provided.

To check which action a player has chosen we use a match statement or a match expression:

transition PlayerAction (action : Action)
...
match action with
| Resign =>
...

| Place piece square =>
...

| Move square direction distance promote =>
...

end;
...

end

Type identity for user-defined ADTs

Note: Due to a bug in the Scilla implementation the information in this section is only valid from Scilla version 0.10.0
and forwards. Contracts written in Scilla versions prior to 0.10.0 and which exploit this bug will have to be rewritten
and redeployed, as they will no longer work from version 0.10.0 and onwards.

Each type declaration defines a unique type. In particular this means that even if two libraries both define identical
types, the types are considered different.

As an example, consider the following two contracts:

library C1Lib

type T =
| C1 of Uint32
| C2 of Bool

(continues on next page)
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contract Contract1()

field contract2_address : ByStr20 = 0x1234567890123456789012345678901234567890

transition Sending ()
c2 <- contract2_address;
x = Uint32 0;
out = C1 x;
msg = { _tag : "Receiving" ; _recipient : c2 ; _amount : Uint128 0 ;

param : out };
no_msg = Nil {Message};
msgs = Cons {Message} msg no_msg;
send msgs

end

(* ******************************* *)

(* Contract2 is deployed at address 0x1234567890123456789012345678901234567890 *)
library C2Lib

type T =
| C1 of Uint32
| C2 of Bool

contract Contract2()

transition Receiving (param : T)
match param with
| C1 v =>
| C2 b =>
end

end

Even though both contracts define identical types T, the two types are considered different in Scilla. In particlar this
means that the message sent from Contract1 to Contract2 will not trigger the Receiving transition, because
the value sent as the param message field has the type T from Contract1, whereas the type T from Contract2
is expected.

In order to pass a value of a user-defined ADT as a parameter to a transition, the type must be defined in a user-defined
library, which both the sending and the receiving contract must import:

library MutualLib

type T =
| C1 of Uint32
| C2 of Bool

(* ******************************* *)

import MutualLib

library C1Lib

contract Contract1()

field contract2_address : ByStr20 = 0x1234567890123456789012345678901234567890

(continues on next page)
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transition Sending ()
c2 <- contract2_address;
x = Uint32 0;
out = C1 x;
msg = { _tag : "Receiving" ; _recipient : c2 ; _amount : Uint128 0 ;

param : out };
no_msg = Nil {Message};
msgs = Cons {Message} msg no_msg;
send msgs

end

(* ******************************* *)

(* Contract2 is deployed at address 0x1234567890123456789012345678901234567890 *)

scilla_version 0

import MutualLib

library C2Lib

contract Contract2()

transition Receiving (param : T)
match param with
| C1 v =>
| C2 b =>
end

end

The section User-defined Libraries has more information on how to define and use libraries.

3.4.4 More ADT examples

To further illustrate how ADTs can be used, we provide some more examples and describe them in detail. Versions of
both the functions described below can be found in the ListUtils part of the Scilla standard library.

Computing the Head of a List

The function list_head returns the first element of a list.

Since a list may be empty, list_head may not always be able to compute a result, and thus should return a value
of the Option type. If the list is non-empty, and the first element is h, then list_head should return Some h.
Otherwise, if the list is empty, list_head should return None.

The following code snippet shows the implementation of list_head, and how to apply it:

1 let list_head =
2 tfun 'A =>
3 fun (l : List 'A) =>
4 match l with
5 | Cons h t =>
6 Some {'A} h
7 | Nil =>
8 None {'A}

(continues on next page)
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9 end
10

11 let int_head = @list_head Int32 in
12

13 let one = Int32 1 in
14 let two = Int32 2 in
15 let three = Int32 3 in
16 let nil = Nil {Int32} in
17

18 let l1 = Cons {Int32} three nil in
19 let l2 = Cons {Int32} two l1 in
20 let l3 = Cons {Int32} one l2 in
21 int_head l3

Line 2 specifies that 'A is a type parameter to the function, while line 3 specifies that l is a (value) parameter of type
List 'A. In other words, lines 1-3 specify a function list_head which can be instantiated for any type 'A, and
which takes as an argument a value of type List 'A.

The pattern-match in lines 4-9 matches on the value of l. In line 5 we match on the list constructor Cons h t, where
h is the first element of the list, and t is the rest of the list. If the list is not empty then the match is successful, and
we return the first element as an optional value Some h. In line 7 we match on the list constructor Nil. If the list is
empty then the match is successful, and we return the optional value None indicating that there was no head element
of the list.

Line 11 instantiates the list_head function for the type Int32, so that list_head can be applied to values of
type List Int32. Lines 13-20 build a list of type List Int32, and line 21 invokes the instantiated list_head
function on the list that was built.

Computing a Left Fold

The function list_foldl returns the result of a left fold given a function f : 'B -> 'A -> 'B, accumulator
z : 'B and list xs : List 'A. This can be implemented as a recursion primitive or a list utility function.

A left fold is a recursive application of an accumulator z and next list element x : 'A with f repetitively until
there are no more list elements. For example the left fold on [1,2,3] using subtraction starting with accumulator 0
would be ((0-1)-2)-3 = -6. The left fold is explained in pseudocode below, note that the result is always the
accumulator type.

1 list_foldl _ z [] = z
2 list_foldl f z (x:xs) = list_foldl f (f z x) xs

The same can be achieved with list_foldk by partially applying a left fold description; this avoids illegal direct
recursion. Our fold description left_f : 'B -> 'A -> ('B -> 'B) -> 'B takes arguments accumu-
lator, next list element and recursive call. The recursive call will be supplied by the list_foldk function. An
implementation is explained below.

1 let list_foldl : forall 'A. forall 'B. ( 'B -> 'A -> 'B) -> 'B -> List 'A -> 'B =
2 tfun 'A => tfun 'B =>
3 fun (f : 'B -> 'A -> 'B) =>
4 let left_f = fun (z: 'B) => fun (x: 'A) =>
5 fun (recurse : 'B -> 'B) => let res = f z x in
6 recurse res in
7 let folder = @list_foldk 'A 'B in
8 folder left_f
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On line 1, we declare the name and type signature as according to the first paragraph. On the second line, we say that
the function takes two types as arguments 'A and 'B. The third line says that we take some function f to process the
list element and accumulator, as in paragraph two.

On line 4, we define the fold description using f. The fold description does not take a function but instead it should
be implemented in terms of some function, as according to the type signature, left_f : 'B -> 'A -> ('B
-> 'B) -> 'B. left_f takes arguments as described in paragraph two. We calculate the new accumulator f z
x and call it res. Then we recursively call with the new accumulator.

On line 7, we instantiate an instance of list_foldk that has the right types for the job using a type application.

On line 8, we partially apply folder with the left fold description. . What is significant about list_foldk is that
when calling the description, it provides a recursive call to itself, changing to the next element in the list and respective
tail each time. This results in a function that just needs the user to provide the updated accumulator in the description.

Computing a Right Fold

The function list_foldr returns the result of a right fold given some function f : 'A -> 'B -> 'B, accu-
mulator z : 'B and list xs : List 'A. Like list_foldl, this can be a recursion primitive or a list utility
function.

A right fold is similar to a left fold but is reversed in a way. The right fold applies a function f with an accumulator
z starting from the end and then combines with the second last element, third last element, etc. . . until it reaches the
beginning. For example a right fold on the list [1,2,3] with subtraction starting with accumulator 0 would be equal
to 1-(2-(3-0)) = 2. It is listed below in pseudocode, note that the result is always the accumulator type.

1 list_foldr _ z [] = z
2 list_foldr f z (x:xs) = f x (list_foldr f z xs)

Like before, the same can be achieved with list_foldk by partially applying a right fold description. The fold
description takes arguments accumulator z : 'B, next list element x : 'A and recursive call recurse :
'B -> 'B. The recursive call will be supplied by the list_foldk function. An implementation is explained
below.

1 let list_foldr : forall 'A. forall 'B. ('A -> 'B -> 'B) -> 'B -> List 'A -> 'B =
2 tfun 'A => tfun 'B =>
3 fun (f : 'A -> 'B -> 'B) =>
4 let right_f = fun (z: 'B) => fun (x: 'A) =>
5 fun (recurse : 'B -> 'B) => let res = recurse z in f x res in
6 let folder = @list_foldk 'A 'B in
7 folder right_f

This is very similar to before. On line 1 we declare the name and type signature, according to the first paragraph. On
line 2, we take two type arguments 'A and 'B. The third line says that we take some function f to process the list
element x : 'A and accumulator z. The argument order is necessarily different to that of a left fold.

Following that we write a fold description like before. list_foldk processes lists from left to right. But we need
list_foldr to emulate the right-to-left traversal. By calling recurse z on line 5 as our first action, we postpone
actual computation with the combining function f preserving the original accumulator until the very end. Once the
recursive call reaches an empty list it returns the original accumulator. Then the function calls f x res (line 5) will
evaluate outwards combining from the end to the beginning, see paragraph two.

The recursive call recurse z on line 5 may seem to be the same each time but what is changing is the list element
we process.

On line 6, we instantiate list_foldk by applying the types 'A and 'B to make a type-specific function. The last
line we partially apply folderwith the right fold description. Like before what is special about list_foldk is that
it calls this function with a recursive call to itself that each time slightly truncates the list; this provides the recursion.
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Checking for Existence in a List

The function list_exists takes a predicate function and a list, and returns a value indicating whether the predicate
holds for at least one element in the list.

A predicate function is a function returning a Boolean value, and since we want to apply it to elements in the list, the
argument type of the function should be the same as the element type of the list.

list_exists should return either True (if the predicate holds for at least one element) or False (if the predicate
does not hold for any element in the list), so the return type of list_exists should be Bool.

The following code snippet shows the implementation of list_exists, and how to apply it:

1 let list_exists =
2 tfun 'A =>
3 fun (f : 'A -> Bool) =>
4 fun (l : List 'A) =>
5 let folder = @list_foldl 'A Bool in
6 let init = False in
7 let iter =
8 fun (z : Bool) =>
9 fun (h : 'A) =>

10 let res = f h in
11 match res with
12 | True =>
13 True
14 | False =>
15 z
16 end
17 in
18 folder iter init l
19

20 let int_exists = @list_exists Int128 in
21 let f =
22 fun (a : Int128) =>
23 let three = Int128 3 in
24 builtin lt a three
25

26 (* build list l3 similar to the previous example *)
27 ...
28

29 (* check if l3 has at least one element satisfying f *)
30 int_exists f l3

As in the previous example 'A is a type variable to the function. The function takes two arguments:

• A predicate f, i.e., a function that returns a Bool. In this case, f will be applied to elements of the list, so the
argument type of the predicate should be 'A. Hence, f should have the type 'A -> Bool.

• A list of elements l of type List 'A, so that the type of the elements in the list matches the argument type of
f.

To traverse the elements of the input list l we use list_foldl. In line 5 we instantiate list_foldl for lists with
elements of type 'A and for the accumulator type Bool. In line 6 we set the initial accumulator value to False to
indicate that no element satisfying the predicate has yet been seen.

The processing function iter defined in lines 7-16 tests the predicate on the current list element, and returns an
updated accumulator. If an element has been found which satisfies the predicate, the accumulator is set to True and
remains so for the rest of the traversal.
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The final value of the accumulator is either True, indicating that f returned True for at least one element in the list,
or False, indicating that f returned False for all elements in the list.

In line 20 we instantiate list_exists to work on lists of type Int128. In lines 21-24 we define the predicate,
which returns True if its argument is less than 3, and returns False otherwise.

Omitted in line 27 is building the same list l3 as in the previous example. In line 30 we apply the instantiated
list_exists to the predicate and the list.

Finding the first occurrence satisfying a predicate

The function list_find searches for the first occurrence in a list that satisfies some predicate p : 'A ->
Bool. It takes the predicate and the list, returning Some {'A} x :: Option 'A if x is the first element
such that p x and None {'A} :: Option 'A otherwise.

Below we have an implementation of list_find that illustrates how to use list_foldk.

1 let list_find : forall 'A. ('A -> Bool) -> List 'A -> Option 'A =
2 tfun 'A =>
3 fun (p : 'A -> Bool) =>
4 let foldk = @list_foldk 'A (Option 'A) in
5 let init = None {'A} in
6 (* continue fold on None, exit fold when Some compare st. p(compare) *)
7 let predicate_step =
8 fun (ignore : Option 'A) => fun (x : 'A) =>
9 fun (recurse: Option 'A -> Option 'A) =>

10 let p_x = p x in
11 match p_x with
12 | True => Some {'A} x
13 | False => recurse init
14 end in
15 foldk predicate_step init

Like before, we take a type variable 'A on line 2 and take the predicate on the next line. We begin by using this type
variable to instantiate foldk, by giving it our processing type and return type. The processing type being the list
element type and the result type being Option 'A. The next line is our accumulator, we assume that at the start of
the search there is no satisfier.

On line 7, we write a fold description for foldk. This embodies the order of the recursion and conditions for
recursion. predicate_step has the type Option 'A -> 'A -> (Option 'A -> Option 'A) ->
Option 'A. The first argument is the accumulator, the second x is the next element to process and the third
recurse is the recursive call. We do not care what the accumulator ignore is since if it mattered we will have
already terminated.

On lines 10 to 12 check for p x and if so return Some {'A} x. In the case that p x does not hold, try again from
scratch with the next element and so on via recursion. recurse init is in pseudo-code equal to 𝜆k. foldk
predicate_step init k xs where xs is the tail of our list of to be processed elements.

With the final line we partially apply foldk so that it just takes a list argument and gives us our final answer. The
first argument of foldk gives us the specific fold we want, for example if you wanted a left fold you would replace
predicate_step with something else.

3.4.5 Standard Libraries

The Scilla standard library is documented separately.
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3.4.6 User-defined Libraries

In addition to the standard library provided by Scilla, users are allowed to deploy library code on the blockchain.
Library files are allowed to only contain pure Scilla code (which is the same restriction that in-contract library code
has). Library files must use the .scillib file extension.

Below is an example of a user-defined library that defines a single function add_if_equal that adds to Uint128
values if they are equal and returns 0 otherwise.

import IntUtils

library ExampleLib

let add_if_equal =
fun (a : Uint128) => fun (b : Uint128) =>
let eq = uint128_eq a b in
match eq with
| True => builtin add a b
| False => Uint128 0

The structure of a library file is similar to the structure of the library part of a Scilla contract. A library file contains
definitions of variables and pure library functions, but does not contain an actual contract definition with parameters,
fields, transitions and so on.

Of particular importance is that a library cannot declare fields. Therefore, all libraries are stateless and can only contain
pure code.

Similar to how contracts can import libraries, a library can import other libraries (including user-defined libraries) too.
The scope of variables in an imported library is restricted to the immediate importer. So if X imports library Y which
in turn imports library Z, then the names in Z are not in scope in X‘, but only in Y. Cyclic dependencies in imports are
not allowed and flagged as errors during the checking phase.

Local Development with User-defined Libraries

To use variables and functions declared in an external (user-defined) library module, the command line argument
to the Scilla executables must include a -libdir option, along with a list of directories as an argument. If the
Scilla file imports a library ALib, then the Scilla executable will search for a library file called ALib.scillib
in the directories provided. If more than one directory contains a file with the correct name, then the directories are
given priority in the same order as they are provided to the Scilla executable. Alternatively, the environment variable
SCILLA_STDLIB_PATH can be set to a list of library directories.

scilla-checker typechecks library modules in the same way as contract modules. Similarly, scilla-runner
can deploy libraries. Note that scilla-runner takes a blockhain.json as argument (the way it does for
Contract Creation) to be command line argument compatible with contract creation.

User-defined Libraries on the Blockchain

While the Zilliqa blockchain is designed to provide the standard Scilla libraries to an executing contract, it must be
provided with extra information to support user-defined libraries.

The init.json of a library must include a Bool entry named _library, set to True. Additionally, A contract
or a library that imports user-defined libraries must include in its init.json an entry named _extlibs, of Scilla type
List (Pair String ByStr20). Each entry in the list maps an imported library’s name to its address in the
blockchain.

Continuing the previous example, a contract or library that imports Examplelib should have the following entry in
its init.json:
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[
...,
{

"vname" : "_library",
"type" : "Bool",
"value": { "constructor": "True", "argtypes": [], "arguments": [] }

}
{
"vname" : "_extlibs",
"type" : "List(Pair String ByStr20)",
"value" : [

{
"constructor" : "Pair",
"argtypes" : ["String", "ByStr20"],
"arguments" : ["ExampleLib", "0x986556789012345678901234567890123456abcd"]

},
...

]
}

]

Namespaces

Import statements can be used to define separate namespaces for imported names. To push the names from a library
Foo into the namespace Bar, use the statement import Foo as Bar. Accessing a variable v in Foo must now
be done using the qualified name Bar.v. This is useful when importing multiple libraries that define the same name.

The same variable name must not be defined more than once in the same namespace, so if multiple imported libraries
define the same name, then at most one of the libraries may reside in the default (unqualified) namespace. All other
conflicting libraries must be pushed to separate namespaces.

Extending our previous example, shown below is a contract that imports ExampleLib in namespace Bar, to use the
function add_if_equal.

scilla_version 0

import ExampleLib as Bar

library MyContract

let adder = fun (a : Uint128) => fun (b : Uint128) =>
Bar.add_if_equal a b

contract MyContract ()
...

3.4.7 Scilla versions

Major and Minor versions

Scilla releases have a major version, minor version and a patch number, denoted as X.Y.Z where X is the major
version, Y is the minor version, and Z the patch number.

• Patches are usually bug fixes that do not impact the behaviour of existing contracts. Patches are backward
compatible.
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• Minor versions typically include performance improvements and feature additions that do not affect the be-
haviour of existing contracts. Minor versions are backward compatible until the latest major version.

• Major versions are not backward compatible. It is expected that miners have access to implementations of each
major version of Scilla for running contracts set to that major version.

Within a major version, miners are advised to use the latest minor revision.

The command scilla-runner -version will print major, minor and patch versions of the interpreter being
invoked.

Contract Syntax

Every Scilla contract must begin with a major version declaration. The syntax is shown below:

(***************************************************)
(* Scilla version *)
(***************************************************)

scilla_version 0

(***************************************************)
(* Associated library *)
(***************************************************)

library MyContractLib

...

(***************************************************)
(* Contract definition *)
(***************************************************)

contract MyContract

...

When deploying a contract the output of the interpreter contains the field scilla_version : X.Y.Z, to be
used by the blockchain code to keep track of the version of the contract. Similarly, scilla-checker also reports
the version of the contract on a successful check.

The init.json file

In addition to the version specified in the contract source code, it is also required that the contract’s init.json
specifies the same version when the contract is deployed and when the contract’s transitions are invoked. This eases
the process for the blockchain code to decide which interpreter to invoke.

A mismatch in the versions specified in init.json and the source code will lead to a gas-charged error by the
interpreter.

An example init.json:

[
{

"vname" : "_creation_block",
"type" : "BNum",
"value" : "1"

(continues on next page)
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},
{

"vname" : "_scilla_version",
"type" : "Uint32",
"value" : "1",

}
]

Chain Calls

When a user invokes a transition on a contract by sending a message with the contract’s address as the recipient, then
that transition may then send one or more messages onwards, possibly invoking other transitions on other contracts.
The resulting collection of messages, fund transfers, transition invocations, and contract state changes are referred to
as a transaction.

A transition that sends a message invoking another transition (typically on another contract) is referred to as a chain
call.

During a transaction a LIFO queue (i.e., a stack) of unprocessed messages is maintained. Initially, the message queue
contains only the single message sent by the original user, but additional messages may be added to the queue when a
transition performs a chain call.

When a transition finishes, its outgoing messages are added to the message queue. The first message in the queue is
then removed from the queue for processing. If there are no messages left to process, then the transaction finishes, and
all state changes and fund transfers are committed to the blockchain.

When a transition sends multiple messages, the messages are added to the queue in the following order:

• If multiple send statements are executed, then the messages of the last send are added first. This means that
the messages of the first send get processed first.

• If a send statement is given a list with multiple messages in it, then the messages of the tail of the list are added
to the queue before the head of the list is added. This means that the first message in the list gets processed first.

Any run-time failure during the execution of a transaction causes the entire transaction to be aborted, with no further
statements being executed, no further messages being processed, all state changes being rolled back, and all transferred
funds returned to their respective senders. However, gas is still charged for the transcaction up until the point of the
failure.

The total number of messages that can be sent in a single transaction is currently set at 20. The number is subject to
revision in the future.

Contracts of different Scilla versions may invoke transitions on each other. The semantics of message passing between
contracts is guaranteed to be backward compatible between major versions.

Accounting

For the transfer of native ZIL funds, Scilla follows an acceptance semantics. For a transfer to take place between
contracts the funds must explicitly be accepted by the recipient by executing an accept statement - it is not sufficient
that the sender executes a send statement.

When a contract executes a send statement the _amount values of the outgoing messages are deducted from the
_balance field. However, the funds are not yet added to the recipient’s _balance field, because they have not yet
been explicitly accepted by the recipient.

When the recipient executes an accept statement the _amount of the incoming message is added to the contract’s
_balance field.
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If the recipient does not execute and accept statement, the _amount is transferred back to the sender before the
next message is processed.

While the funds in a message are “in transit”, i.e., between the point at which they is sent by the sender and the point at
which they are accepted by the recipient (or, in the case of non-acceptance, the point at which the recipient transition
finishes executing), the funds are stored away in the message itself, and therefore do not appear in neither the sender’s
nor the recipient’s balances.

Note: A user account (i.e., an address that does not hold a contract) implicitly accepts all incoming funds, but does
not do so until the message carrying the funds is processed.

If a contract executes a send statement on messages for which the total amount is more than the contract’s current
balance, then a run-time error occurs, and the entire transaction is aborted. In other words, no account balance may
drop below 0 at any point during a transaction.

3.5 The Scilla Standard Library

The Scilla standard library contains five libraries: BoolUtils.scilla, IntUtils.scilla, ListUtils.
scilla, NatUtils.scilla and PairUtils.scilla. As the names suggests these contracts implement utility
operations for the Bool, IntX, List, Nat and Pair types, respectively.

To use functions from the standard library in a contract, the relevant library file must be imported using the import
declaration. The following code snippet shows how to import the functions from the ListUtils and IntUtils
libraries:

import ListUtils IntUtils

The import declaration must occur immediately before the contract’s own library declaration, e.g.:

import ListUtils IntUtils

library WalletLib
... (* The declarations of the contract's own library values and functions *)

contract Wallet ( ... )
... (* The transitions and procedures of the contract *)

Below, we present the functions defined in each of the library.

3.5.1 BoolUtils

• andb : Bool -> Bool -> Bool: Computes the logical AND of two Bool values.

• orb : Bool -> Bool -> Bool: Computes the logical OR of two Bool values.

• negb : Bool -> Bool: Computes the logical negation of a Bool value.

• bool_to_string : Bool -> String: Transforms a Bool value into a String value. True is
transformed into "True", and False is transformed into "False".

3.5.2 IntUtils

• intX_eq : IntX -> IntX -> Bool: Equality operator specialised for each IntX type.
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let int_list_eq = @list_eq Int64 in

let one = Int64 1 in
let two = Int64 2 in
let ten = Int64 10 in
let eleven = Int64 11 in

let nil = Nil {Int64} in
let l1 = Cons {Int64} eleven nil in
let l2 = Cons {Int64} ten l1 in
let l3 = Cons {Int64} two l2 in
let l4 = Cons {Int64} one l3 in

let f = int64_eq in
(* See if [2,10,11] = [1,2,10,11] *)
int_list_eq f l3 l4

• uintX_eq : UintX -> UintX -> Bool: Equality operator specialised for each UintX type.

• intX_lt : IntX -> IntX -> Bool: Less-than operator specialised for each IntX type.

• uintX_lt : UintX -> UintX -> Bool: Less-than operator specialised for each UintX type.

• intX_neq : IntX -> IntX -> Bool: Not-equal operator specialised for each IntX type.

• uintX_neq : UintX -> UintX -> Bool: Not-equal operator specialised for each UintX type.

• intX_le : IntX -> IntX -> Bool: Less-than-or-equal operator specialised for each IntX type.

• uintX_le : UintX -> UintX -> Bool: Less-than-or-equal operator specialised for each UintX
type.

• intX_gt : IntX -> IntX -> Bool: Greater-than operator specialised for each IntX type.

• uintX_gt : UintX -> UintX -> Bool: Greater-than operator specialised for each UintX type.

• intX_ge : IntX -> IntX -> Bool: Greater-than-or-equal operator specialised for each IntX type.

• uintX_ge : UintX -> UintX -> Bool: Greater-than-or-equal operator specialised for each UintX
type.

3.5.3 ListUtils

• list_map : ('A -> 'B) -> List 'A -> : List 'B.

Apply f : 'A -> 'B to every element of l : List 'A, constructing a list (of type List 'B) of the
results.

(* Library *)
let f =
fun (a : Int32) =>

builtin sha256hash a

(* Contract transition *)
(* Assume input is the list [ 1 ; 2 ; 3 ] *)
(* Apply f to all values in input *)

(continues on next page)

78 Chapter 3. Contents



scilla-doc Documentation, Release 0.11.0

(continued from previous page)

hash_list_int32 = @list_map Int32 ByStr32;
hashed_list = hash_list_int32 f input;
(* hashed_list is now [ sha256hash 1 ; sha256hash 2 ; sha256hash 3 ] *)

• list_filter : ('A -> Bool) -> List 'A -> List 'A.

Filter out elements on the list based on the predicate f : 'A -> Bool. If an element satisfies f, it will be
in the resultant list, otherwise it is removed. The order of the elements is preserved.

(*Library*)
let f =
fun (a : Int32) =>

let ten = Int32 10 in
builtin lt a ten

(* Contract transition *)
(* Assume input is the list [ 1 ; 42 ; 2 ; 11 ; 12 ] *)
less_ten_int32 = @list_filter Int32;
less_ten_list = less_ten_int32 f l
(* less_ten_list is now [ 1 ; 2 ]*)

• list_head : (List 'A) -> (Option 'A).

Return the head element of a list l : List 'A as an optional value. If l is not empty with the first element
h, the result is Some h. If l is empty, then the result is None.

• list_tail : (List 'A) -> (Option List 'A).

Return the tail of a list l : List 'A as an optional value. If l is a non-empty list of the form Cons h t,
then the result is Some t. If l is empty, then the result is None.

• list_foldl_while : ('B -> 'A -> Option 'B) -> 'B -> List 'A -> 'B

Given a function f : 'B -> 'A -> Option 'B, accumulator z : 'B and list ls : List 'A
execute a left fold when our given function returns Some x : Option 'B using f z x : 'B or list is
empty but in the case of None : Option 'B terminate early, returning z.

(* assume zero = 0, one = 1, negb is in scope and ls = [10,12,9,7]
given a max and list with elements a_0, a_1, ..., a_m
find largest n s.t. sum of i from 0 to (n-1) a_i <= max *)

let prefix_step = fun (len_limit : Pair Uint32 Uint32) => fun (x : Uint32) =>
match len_limit with
| Pair len limit => let limit_lt_x = builtin lt limit x in
let x_leq_limit = negb limit_lt_x in
match x_leq_limit with

(continues on next page)
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| True => let len_succ = builtin add len one in let l_sub_x = builtin sub limit x
→˓in

let res = Pair {Uint32 Uint32} len_succ l_sub_x in
Some {(Pair Uint32 Uint32)} res

| False => None {(Pair Uint32 Uint32)}
end

end in
let fold_while = @list_foldl_while Uint32 (Pair Uint32 Uint32) in
let max = Uint32 31 in
let init = Pair {Uint32 Uint32} zero max in
let prefix_length = fold_while prefix_step init ls in
match prefix_length with
| Pair length _ => length
end

• list_append : (List 'A -> List 'A -> List 'A).

Append the first list to the front of the second list, keeping the order of the elements in both lists. Note that
list_append has linear time complexity in the length of the first argument list.

• list_reverse : (List 'A -> List 'A).

Return the reverse of the input list. Note that list_reverse has linear time complexity in the length of the
argument list.

• list_flatten : (List List 'A) -> List 'A.

Construct a list of all the elements in a list of lists. Each element (which has type List 'A) of the input list
(which has type List List 'A) are all concatenated together, keeping the order of the input list. Note that
list_flatten has linear time complexity in the total number of elements in all of the lists.

• list_length : List 'A -> Uint32

Count the number of elements in a list. Note that list_length has linear time complexity in the number of
elements in the list.

• list_eq : ('A -> 'A -> Bool) -> List 'A -> List 'A -> Bool.

Compare two lists element by element, using a predicate function f : 'A -> 'A -> Bool. If f returns
True for every pair of elements, then list_eq returns True. If f returns False for at least one pair of
elements, or if the lists have different lengths, then list_eq returns False.

• list_mem : ('A -> 'A -> Bool) -> 'A -> List 'A -> Bool.
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Checks whether an element a : 'A is an element in the list l : List'A. f : 'A -> 'A ->
Bool should be provided for equality comparison.

(* Library *)
let f =
fun (a : Int32) =>
fun (b : Int32) =>

builtin eq a b

(* Contract transition *)
(* Assume input is the list [ 1 ; 2 ; 3 ; 4 ] *)
keynumber = Int32 5;
list_mem_int32 = @list_mem Int32;
check_result = list_mem_int32 f keynumber input;
(* check_result is now False *)

• list_forall : ('A -> Bool) -> List 'A -> Bool.

Check whether all elements of list l : List 'A satisfy the predicate f : 'A -> Bool.
list_forall returns True if all elements satisfy f, and False if at least one element does not satisfy f.

• list_exists : ('A -> Bool) -> List 'A -> Bool.

Check whether at least one element of list l : List 'A satisfies the predicate f : 'A -> Bool.
list_exists returns True if at least one element satisfies f, and False if none of the elements satisfy f.

• list_sort : ('A -> 'A -> Bool) -> List 'A -> List 'A.

Sort the input list l : List 'A using insertion sort. The comparison function flt : 'A -> 'A ->
Bool provided must return True if its first argument is less than its second argument. list_sort has
quadratic time complexity.

let int_sort = @list_sort Uint64 in

let flt =
fun (a : Uint64) =>
fun (b : Uint64) =>
builtin lt a b

let zero = Uint64 0 in
let one = Uint64 1 in
let two = Uint64 2 in
let three = Uint64 3 in
let four = Uint64 4 in

(* l6 = [ 3 ; 2 ; 1 ; 2 ; 3 ; 4 ; 2 ] *)
let l6 =
let nil = Nil {Uint64} in

(continues on next page)
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let l0 = Cons {Uint64} two nil in
let l1 = Cons {Uint64} four l0 in
let l2 = Cons {Uint64} three l1 in
let l3 = Cons {Uint64} two l2 in
let l4 = Cons {Uint64} one l3 in
let l5 = Cons {Uint64} two l4 in
Cons {Uint64} three l5

(* res1 = [ 1 ; 2 ; 2 ; 2 ; 3 ; 3 ; 4 ] *)
let res1 = int_sort flt l6

• list_find : ('A -> Bool) -> List 'A -> Option 'A.

Return the first element in a list l : List 'A satisfying the predicate f : 'A -> Bool. If at least
one element in the list satisfies the predicate, and the first one of those elements is x, then the result is Some
x. If no element satisfies the predicate, the result is None.

• list_zip : List 'A -> List 'B -> List (Pair 'A 'B).

Combine two lists element by element, resulting in a list of pairs. If the lists have different lengths, the trailing
elements of the longest list are ignored.

• list_zip_with : ('A -> 'B -> 'C) -> List 'A -> List 'B -> List 'C ).

Combine two lists element by element using a combining function f : 'A -> 'B -> 'C. The result of
list_zip_with is a list of the results of applying f to the elements of the two lists. If the lists have
different lengths, the trailing elements of the longest list are ignored.

• list_unzip : List (Pair 'A 'B) -> Pair (List 'A) (List 'B).

Split a list of pairs into a pair of lists consisting of the elements of the pairs of the original list.

• list_nth : Uint32 -> List 'A -> Option 'A.

Return the element number n from a list. If the list has at least n elements, and the element number n is x,
list_nth returns Some x. If the list has fewer than n elements, list_nth returns None.

3.5.4 NatUtils

• nat_prev : Nat -> Option Nat: Return the Peano number one less than the current one. If the
current number is Zero, the result is None. If the current number is Succ x, then the result is Some x.
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• nat_fold_while : ('T -> Nat -> Option 'T) -> 'T -> Nat -> 'T: Takes arguments
f : 'T -> Nat -> Option 'T, z : `T and m : Nat. This is nat_fold with early termi-
nation. Continues recursing so long as f returns Some y with new accumulator y. Once f returns None, the
recursion terminates.

• is_some_zero : Nat -> Bool: Zero check for Peano numbers.

• nat_eq : Nat -> Nat -> Bool: Equality check specialised for the Nat type.

• nat_to_int : Nat -> Uint32: Convert a Peano number to its equivalent Uint32 integer.

• uintX_to_nat : UintX -> Nat: Convert a UintX integer to its equivalent Peano number. The inte-
ger must be small enough to fit into a Uint32. If it is not, then an overflow error will occur.

• intX_to_nat : IntX -> Nat: Convert an IntX integer to its equivalent Peano number. The integer
must be non-negative, and must be small enough to fit into a Uint32. If it is not, then an underflow or overflow
error will occur.

3.5.5 PairUtils

• fst : Pair 'A 'B -> 'A: Extract the first element of a Pair.

let fst_strings = @fst String String in
let nick_name = "toby" in
let dog = "dog" in
let tobias = Pair {String String} nick_name dog in
fst_strings tobias

• snd : Pair 'A 'B -> 'B: Extract the second element of a Pair.

3.5.6 Conversions

This library provides conversions b/w Scilla types, particularly between integers and byte strings.

To enable specifying the encoding of integer arguments to these functions, a type is defined for endianness.

type IntegerEncoding =
| LittleEndian
| BigEndian

The functions below, along with their primary result, also return next_pos : Uint32 which indicates the posi-
tion from which any further data extraction from the input ByStr value can proceed. This is useful when deserializing
a byte stream. In other words, next_pos indicates where this function stopped reading bytes from the input byte
string.

• substr_safe : ByStr -> Uint32 -> Uint32 -> Option ByStr While Scilla provides a
builtin to extract substrings of byte strings (ByStr), it is not exception safe. When provided incorrect ar-
guments, it throws exceptions. This library function is provided as an exception safe function to extract, from a
string s : ByStr, a substring starting at position pos : Uint32 and of length len : Uint32. It
returns Some ByStr on success and None on failure.

• extract_uint32 : IntegerEncoding -> ByStr -> Uint32 -> Option (Pair
Uint32 Uint32) Extracts a Uint32 value from bs : ByStr, starting at position pos : Uint32.
On success, Some extracted_uint32_value next_pos is returned. None otherwise.

• extract_uint64 : IntegerEncoding -> ByStr -> Uint32 -> Option (Pair
Uint64 Uint32) Extracts a Uint64 value from bs : ByStr, starting at position pos : Uint32.
On success, Some extracted_uint64_value next_pos is returned. None otherwise.
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• extract_uint128 : IntegerEncoding -> ByStr -> Uint32 -> Option (Pair
Uint128 Uint32) Extracts a Uint128 value from bs : ByStr, starting at position pos : Uint32.
On success, Some extracted_uint128_value next_pos is returned. None otherwise.

• extract_uint256 : IntegerEncoding -> ByStr -> Uint32 -> Option (Pair
Uint256 Uint32) Extracts a Uint256 value from bs : ByStr, starting at position pos :
Uint32. On success, Some extracted_uint256_value next_pos is returned. None otherwise.

• extract_bystr1 : ByStr -> Uint32 -> Option (Pair ByStr1 Uint32) Extracts
a ByStr1 value from bs : ByStr, starting at position pos : Uint32. On success, Some
extracted_bystr1_value next_pos is returned. None otherwise.

• extract_bystr2 : ByStr -> Uint32 -> Option (Pair ByStr2 Uint32) Extracts
a ByStr2 value from bs : ByStr, starting at position pos : Uint32. On success, Some
extracted_bystr2_value next_pos is returned. None otherwise.

• extract_bystr20 : ByStr -> Uint32 -> Option (Pair ByStr20 Uint32) Extracts a
ByStr2 value from bs : ByStr, starting at position pos : Uint32. On success, Some
extracted_bystr20_value next_pos is returned. None otherwise.

• extract_bystr32 : ByStr -> Uint32 -> Option (Pair ByStr32 Uint32) Extracts a
ByStr2 value from bs : ByStr, starting at position pos : Uint32. On success, Some
extracted_bystr32_value next_pos is returned. None otherwise.

• append_uint32 : IntegerEncoding -> ByStr -> Uint32 -> ByStr Serialize a Uint32
value (with the specified encoding) and append it to the provided ByStr and return the result ByStr.

• append_uint64 : IntegerEncoding -> ByStr -> Uint32 -> ByStr Serialize a Uint64
value (with the specified encoding) and append it to the provided ByStr and return the result ByStr.

• append_uint128 : IntegerEncoding -> ByStr -> Uint32 -> ByStr Serialize a
Uint128 value (with the specified encoding) and append it to the provided ByStr and return the re-
sult ByStr.

• append_uint256 : IntegerEncoding -> ByStr -> Uint32 -> ByStr Serialize a
Uint256 value (with the specified encoding) and append it to the provided ByStr and return the re-
sult ByStr.

3.5.7 Polynetwork Support Library

This library provides utility functions used in building the Zilliqa Polynetwork bridge. These functions are migrated
from Polynetwork’s ethereum support, with the contract itself separately deployed.

3.6 Scilla Tips and Tricks

3.6.1 Performance

Field map size

If your contract needs to know the size of a field map, i.e. a field variable that is a map then the obvious implementation
that reads a field map into a variable and applies the size builtin (as in the following code snippet) can be very
inefficient as it requires making a copy of the map in question.
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field accounts : Map ByStr20 Uint128 = Emp ByStr20 Uint128

transition Foo()
...
accounts_copy <- accounts;
accounts_size = builtin size accounts_copy;
...

end

In order to solve the issue one tracks the size information in a corresponding field variable as in the following code
snippet. Notice that now instead of copying a map one just reads from accounts_size field variable.

let uint32_one = Uint32 1

field accounts : Map ByStr20 Uint128 = Emp ByStr20 Uint128
field accounts_size : Uint32 = 0

transition Foo()
...
num_of_accounts <- accounts_size;
...

end

Now, to make sure that the map and its size stay in sync, one needs to update the size of the map when using the builtin
in-place statements like m[k] := v or delete m[k] or better yet define and use systematically procedures that
do exactly that.

Here is the definition of a procedure that updates a key/value pair in the accounts map and changes its size accord-
ingly.

procedure insert_to_accounts (key : ByStr20, value : Uint128)
already_exists <- exists accounts[key];
match already_exists with
| True =>

(* do nothing as the size does not change *)
| False =>

size <- accounts_size;
new_size = builtin add size uint32_one;
accounts_size := new_size

end;
accounts[key] := value

end

And this is the definition of a procedure that removes a key/value pair from the accounts map and changes its size
accordingly.

procedure delete_from_accounts (key : ByStr20)
already_exists <- exists accounts[key];
match already_exists with
| False =>
(* do nothing as the map and its size do not change *)

| True =>
size <- accounts_size;
new_size = builtin sub size uint32_one;
accounts_size := new_size

end;
delete accounts[key]

end
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3.6.2 Money Idioms

Partially accepting funds

Let’s say you are working on a contract which lets people tips each other. Naturally, you’d like to avoid a situation
when a person tips too much because of a typo. It would be nice to ask Scilla to accept incoming funds partially, but
there is no accept <cap> builtin. You can either not accept at all or accept the funds fully. We can work around
this restriction by fully accepting the incoming funds and then immediately refunding the tipper if the tip exceeds
some cap.

It turns out we can encapsulate this kind of behavior as a reusable procedure.

procedure accept_with_cap (cap : Uint128)
sent_more_than_necessary = builtin lt cap _amount;
match sent_more_than_necessary with
| True =>

amount_to_refund = builtin sub _amount cap;
accept;
msg = { _tag : ""; _recipient: _sender; _amount: amount_to_refund };
msgs = one_msg msg;
send msgs

| False =>
accept

end
end

Now, the accept_with_cap procedure can be used as follows.

<contract library and procedures here>

contract Tips (tip_cap : Uint128)

transition Tip (message_from_tipper : String)
accept_with_cap tip_cap;
e = { _eventname: "ThanksForTheTip" };
event e

end

3.6.3 Safety

Transfer Contract Ownership

If your contract has an owner (usually it means someone with admin powers like adding/removing user accounts or
pausing/unpausing the contract) which can be changed at runtime then at first sight this can be formalized in the code
as a field owner and a transition like ChangeOwner:

contract Foo (initial_owner : ByStr20)

field owner : ByStr20 = initial_owner

transition ChangeOwner(new_owner : ByStr20)
(* continue executing the transition if _sender is the owner,

throw exception and abort otherwise *)
isOwner;
owner := new_owner

end
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However, this might lead to a situation when the current owner gets locked out of the control over the contract. For
instance, the current owner can potentially transfer contract ownership to a non-existing address due to a typo in the
address parameter when calling the ChangeOwner transition. Here we provide a design pattern to circumvent this
issue.

One way to ensure the new owner is active is to do ownership transfer in two phases:

• the current owner offers to transfer ownership to a new owner, note that at this point the current owner is still
the contract owner;

• the future new owner accepts the pending ownership transfer and becomes the current owner;

• at any moment before the future new owner accepts the transfer the current owner can abort the ownership
transfer.

Here is a possible implementation of the pattern outlined above (the code for the isOwner procedure is not shown):

contract OwnershipTransfer (initial_owner : ByStr20)

field owner : ByStr20 = initial_owner
field pending_owner : Option ByStr20 = None {ByStr20}

transition RequestOwnershipTransfer (new_owner : ByStr20)
isOwner;
po = Some {ByStr20} new_owner;
pending_owner := po

end

transition ConfirmOwnershipTransfer ()
optional_po <- pending_owner;
match optional_po with
| Some pend_owner =>

caller_is_new_owner = builtin eq _sender pend_owner;
match caller_is_new_owner with
| True =>

(* transfer ownership *)
owner := pend_owner;
none = None {ByStr20};
pending_owner := none

| False => (* the caller is not the new owner, do nothing *)
end

| None => (* ownership transfer is not in-progress, do nothing *)
end

end

Ownership transfer for contracts with the above transition is supposed to happen as follows:

• the current owner calls RequestOwnershipTransfer transition with the new owner address as its only
explicit parameter;

• the new owner calls ConfirmOwnershipTransfer.

Until the ownership transition is finalized, the current owner can abort it by calling RequestOwnershipTransfer
with their own address. A (redundant) dedicated transition can be added to make it even more evident to the contract
owners and users.
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3.7 The Scilla checker

The Scilla checker (scilla-checker) works as a compiler frontend, parsing the contract and performing a number
of static checks including typechecking.

3.7.1 Phases of the Scilla checker

The Scilla checker operates in distinct phases, each of which can perform checks (and potentially reject contracts that
do not pass the checks) and add annotations to each piece of syntax:

• Lexing and parsing reads the contract code and builds an abstract syntax tree (AST). Each node in the tree is
annotated with a location from the source file in the form of line and column numbers.

• ADT checking checks various constraints on user-defined ADTs.

• Typechecking checks that values in the contract are used in a way that is consistent with the type system. The
typechecker also annotates each expression with its type.

• Pattern-checking checks that each pattern-match in the contract is exhaustive (so that execution will not fail due
to no match being found), and that each pattern can be reached (so that the programmer does not inadvertently
introduce a pattern branch that can never be reached).

• Event-info checks that messages and events in the contract contain all necessary fields. For events, if a contract
emits two events with the same name (_eventname), then their structure (the fields and their types) must also
be the same.

• Cashflow analysis analyzes the usage of variables, fields and ADTs, and attempts to determine which fields are
used to represent (native) blockchain money. No checks are performed, but expressions, variables, fields and
ADTs are annotated with tags indicating their usage.

• Payment acceptance checking checks contracts for payment acceptances. It raises a warning if a contract has
no transitions which accept payment. Also, the check raises a warning if a transition has any code path with
potentially multiple accept statements in it. This check does not raise an error since it is not possible via
static analysis to know for sure in all cases whether multiple accept statements would be reached if present,
since this can be dependent on conditions which are only known at run-time. The Scilla checker only performs
this check if only -cf flag is specified on the command line, i.e. it is performed together with the cashflow
analysis. For instance, fungible token contracts don’t generally need accept statements, hence this check is
not mandatory.

• Sanity-checking performs a number of minor checks, e.g., that all parameters to a transition or a procedure have
distinct names.

Annotations

Each phase in the Scilla checker can add an annotation to each node in the abstract syntax tree. The type of an
annotation is specified through instantiations of the module signature Rep. Rep specifies the type rep, which is the
type of the annotation:

module type Rep = sig
type rep
...

end

In addition to the type of the annotation, the instantiation of Rep can declare helper functions that allow subsequent
phases to access the annotations of previous phases. Some of these functions are declared in the Rep signature,
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because they involve creating new abstract syntax nodes, which must be created with annotations from the parser
onward:

module type Rep = sig
...

val mk_id_address : string -> rep ident
val mk_id_uint128 : string -> rep ident
val mk_id_bnum : string -> rep ident
val mk_id_string : string -> rep ident

val rep_of_sexp : Sexp.t -> rep
val sexp_of_rep : rep -> Sexp.t

val parse_rep : string -> rep
val get_rep_str: rep -> string

end

mk_id_<type> creates an identifier with an appropriate type annotation if annotation is one of the phases that has
been executed. If the typechecker has not yet been executed, the functions simply create an (untyped) identifier with a
dummy location.

rep_of_sexp and sexp_of_rep are used for pretty-printing. They are automatically generated if rep is defined
with the [@@deriving sexp] directive.

parse_rep and get_rep_str are used for caching of typechecked libraries, so that they do not need to be checked
again if they haven’t changed. These will likely be removed in future versions of the Scilla checker.

As an example, consider the annotation module TypecheckerERep:

module TypecheckerERep (R : Rep) = struct
type rep = PlainTypes.t inferred_type * R.rep
[@@deriving sexp]

let get_loc r = match r with | (_, rr) -> R.get_loc rr

let mk_id s t =
match s with
| Ident (n, r) -> Ident (n, (PlainTypes.mk_qualified_type t, r))

let mk_id_address s = mk_id (R.mk_id_address s) (bystrx_typ address_length)
let mk_id_uint128 s = mk_id (R.mk_id_uint128 s) uint128_typ
let mk_id_bnum s = mk_id (R.mk_id_bnum s) bnum_typ
let mk_id_string s = mk_id (R.mk_id_string s) string_typ

let mk_rep (r : R.rep) (t : PlainTypes.t inferred_type) = (t, r)

let parse_rep s = (PlainTypes.mk_qualified_type uint128_typ, R.parse_rep s)
let get_rep_str r = match r with | (_, rr) -> R.get_rep_str rr

let get_type (r : rep) = fst r
end

The functor (parameterized structure) takes the annotation from the previous phase as the parameter R. In the Scilla
checker this previous phase is the parser, but any phase could be added in-between the two phases by specifying the
phase in the top-level runner.

The type rep specifies that the new annotation is a pair of a type and the previous annotation.

The function get_loc merely serves as a proxy for the get_loc function of the previous phase.
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The function mk_id is a helper function for the mk_id_<type> functions, which create an identifier with the
appropriate type annotation.

The mk_rep function is a helper function used by the typechecker.

Prettyprinting does not output the types of AST nodes, so the functions parse_rep and get_rep_str ignore the
type annotations.

Finally, the function get_type provides access to type information for subsequent phases. This function is not
mentioned in the Rep signature, since it is made available by the typechecker once type annotations have been added
to the AST.

Abstract syntax

The ScillaSyntax functor defines the AST node types. Each phase will instantiate the functor twice, once for the
input syntax and once for the output syntax. These two syntax instantiations differ only in the type of annotations of
each syntax node. If the phase produces no additional annotations, the two instantiations will be identical.

The parameters SR and ER, both of type Rep, define the annotations for statements and expressions, respectively.

module ScillaSyntax (SR : Rep) (ER : Rep) = struct

type expr_annot = expr * ER.rep
and expr = ...

type stmt_annot = stmt * SR.rep
and stmt = ...

end

Initial annotation

The parser generates the initial annotation, which only contains information about where the syntax node is located in
the source file. The function get_loc allows subsequent phases to access the location.

The ParserRep structure is used for annotations both of statements and expressions.

module ParserRep = struct
type rep = loc
[@@deriving sexp]

let get_loc l = l
...

end

Typical phase

Each phase that produces additional annotations will need to provide a new implementation of the Rep module type.
The implementation should take the previous annotation type (as a structure implementing the Rep module type) as a
parameter, so that the phase’s annotations can be added to the annotations of the previous phases.

The typechecker adds a type to each expression node in the AST, but doesn’t add anything to statement node annota-
tions. Consequently, the typechecker only defines an annotation type for expressions.

In addition, the Rep implementation defines a function get_type, so that subsequent phases can access the type in
the annotation.
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module TypecheckerERep (R : Rep) = struct
type rep = PlainTypes.t inferred_type * R.rep
[@@deriving sexp]

let get_loc r = match r with | (_, rr) -> R.get_loc rr

...
let get_type (r : rep) = fst r

end

The Scilla typechecker takes the statement and expression annotations of the previous phase, and then instantiates
TypeCheckerERep (creating the new annotation type), ScillaSyntax (creating the abstract syntax type for the
previous phase, which serves as input to the typechecker), and ScillaSyntax again (creating the abstract syntax
type that the typechecker outputs).

module ScillaTypechecker
(SR : Rep)
(ER : Rep) = struct

(* No annotation added to statements *)
module STR = SR
(* TypecheckerERep is the new annotation for expressions *)
module ETR = TypecheckerERep (ER)

(* Instantiate ScillaSyntax with source and target annotations *)
module UntypedSyntax = ScillaSyntax (SR) (ER)
module TypedSyntax = ScillaSyntax (STR) (ETR)

(* Expose target syntax and annotations for subsequent phases *)
include TypedSyntax
include ETR

(* Instantiate helper functors *)
module TU = TypeUtilities (SR) (ER)
module TBuiltins = ScillaBuiltIns (SR) (ER)
module TypeEnv = TU.MakeTEnv(PlainTypes)(ER)
module CU = ScillaContractUtil (SR) (ER)
...

end

Crucially, the typechecker module exposes the annotations and the syntax type that it generates, so that they can be
made available to the next phase.

The typechecker finally instantiates helper functors such as TypeUtilities and ScillaBuiltIns.

3.7.2 Cashflow Analysis

The cashflow analysis phase analyzes the usage of a contract’s variables, fields, and ADT constructor, and attempts to
determine which fields and ADTs are used to represent (native) blockchain money. Each contract field is annotated
with a tag indicating the field’s usage.

The resulting tags are an approximation based on the usage of the contract’s fields, variables, and ADT constructors.
The tags are not guaranteed to be accurate, but are intended as a tool to help the contract developer use her fields in
the intended manner.
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Running the analysis

The cashflow analysis is activated by running scilla-checker with the option -cf. The analysis is not run by
default, since it is only intended to be used during contract development.

A contract is never rejected due to the result of the cashflow analysis. It is up to the contract developer to determine
whether the cashflow tags are consistent with the intended use of each contract field.

The Analysis in Detail

The analysis works by continually analysing the transitions and procedures of the contract until no further information
is gathered.

The starting point for the analysis is the incoming message that invokes the contract’s transition, the outgoing messages
and events that may be sent by the contract, the contract’s account balance, and any field being read from the blockchain
such as the current blocknumber.

Both incoming and outgoing messages contain a field _amountwhose value is the amount of money being transferred
between accounts by the message. Whenever the value of the _amount field of the incoming message is loaded into
a local variable, that local variable is tagged as representing money. Similarly, a local variable used to initialise the
_amount field of an outgoing message is also tagged as representing money.

Conversely, the message fields _sender, _origin, _recipient, and _tag, the event field _eventname, the
exception field _exception, and the blockchain field BLOCKNUMBER, are known to not represent money, so any
variable used to initialise those fields or to hold the value read from one of those fields is tagged as not representing
money.

Once some variables have been tagged, their usage implies how other variables can be tagged. For instance, if two
variables tagged as money are added to each other, the result is also deemed to represent money. Conversely, if two
variables tagged as non-money are added, the result is deemed to represent non-money.

Tagging of contract fields happens when a local variable is used when loading or storing a contract field. In these
cases, the field is deemed to have the same tag as the local variable.

Tagging of custom ADTs is done when they are used for constructing values, and when they are used in pattern-
matching.

Once a transition or procedure has been analyzed, the local variables and their tags are saved and the analysis proceeds
to the next transition or procedure while keeping the tags of the contract fields and ADTs. The analysis continues until
all the transitions and procedures have been analysed without any existing tags having changed.

Tags

The analysis uses the following set of tags:

• No information: No information has been gathered about the variable. This sometimes (but not always) indicates
that the variable is not being used, indicating a potential bug.

• Money: The variable represents money.

• Not money: The variable represents something other than money.

• Map t (where t is a tag): The variable represents a map or a function whose co-domain is tagged with t. Hence,
when performing a lookup in the map, or when applying a function on the values stored in the map, the result
is tagged with t. Keys of maps are assumed to always be Not money. Using a variable as a function parameter
does not give rise to a tag.
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• T t1 . . . tn (where T is an ADT, and t1 . . . tn are tags): The variable represents a value of an ADT, such as List
or Option. The tags t1 . . . tn correspond to the tags of each type parameter of the ADT. (See the simple example
further down.)

• Inconsistent: The variable has been used to represent both money and not money. Inconsistent usage indicates
a bug.

Library and local functions are only partially supported, since no attempt is made to connect the tags of parameters to
the tag of the result. Built-in functions are fully supported, however.

A simple example

Consider the following code snippet:

match p with
| Nil =>
| Cons x xs =>

msg = { _amount : x ; ...}
...

end

x is used to initialise the _amount field of a message, so x gets tagged with Money. Since xs is the tail of a list of
which x is the first element, xs must be a list of elements with the same tag as x. xs therefore gets tagged with List
Money, corresponding to the fact that the List 'A type has one type parameter.

Similarly, p is matched against the patterns Nil and Cons x xs. Nil is a list, but since the list is empty we don’t
know anything about the contents of the list, and so the Nil pattern corresponds to the tag List (No information).
Cons x xs is also a list, but this time we do know something about the contents, namely that the first element x is
tagged with Money, and the tail of the list is tagged with List Money. Consequently, Cons x xs corresponds to List
Money.

Unifying the two tags List (No information) and List Money gives the tag List Money, so p gets tagged with List Money.

ADT constructor tagging

In addition to tagging fields and local variables, the cashflow analyser also tags constructors of custom ADTs.

To see how this works, consider the following custom ADT:

type Transaction =
| UserTransaction of ByStr20 Uint128
| ContractTransaction of ByStr20 String Uint128

A user transaction is a transaction where the recipient is a user account, so the UserTransaction constructor takes
two arguments: An address of the recipient user account, and the amount to transfer.

A contract transaction is a transaction where the recipient is another contract, so the ContractTransaction takes
three arguments: An address of the recipient contract, the name of the transition to invoke on the recipient contract,
and the amount to transfer.

In terms of cashflow it is clear that the last argument of both constructors is used to represent an amount of money,
whereas all other arguments are used to represent non-money. The cashflow analyser therefore attempts to tag the
arguments of the two constructors with appropriate tags, using the principles described in the previous sections.
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A more elaborate example

As an example, consider a crowdfunding contract written in Scilla. Such a contract may declare the following im-
mutable parameters and mutable fields:

contract Crowdfunding

(* Parameters *)
(owner : ByStr20,
max_block : BNum,
goal : Uint128)

(* Mutable fields *)
field backers : Map ByStr20 Uint128 = ...
field funded : Bool = ...

The owner parameter represents the address of the person deploying the contract. The goal parameter is the amount
of money the owner is trying to raise, and the max_block parameter represents the deadline by which the goal is to
be met.

The field backers is a map from the addresses of contributors to the amount of money contributed, and the field
funded represents whether the goal has been reached.

Since the field goal represents an amount of money, goal should be tagged as Money by the analysis. Similarly, the
backers field is a map with a co-domain representing Money, so backers should be tagged with Map Money.

Conversely, both owner, max_block and funded represent something other than money, so they should all be
tagged with Not money.

The cashflow analysis will tag the parameters and fields according to how they are used in the contract’s transitions
and procedures, and if the resulting tags do not correspond to the expectation, then the contract likely contains a bug
somewhere.

3.8 Interpreter Interface

The Scilla interpreter provides a calling interface that enables users to invoke transitions with specified inputs and
obtain outputs. Execution of a transition with supplied inputs will result in a set of outputs, and a change in the smart
contract mutable state.

3.8.1 Calling Interface

A transition defined in a contract can be called either by the issuance of a transaction, or by message calls from
another contract. The same calling interface will be used to call the contract via external transactions and inter-contract
message calls.

The inputs to the interpreter (scilla-runner) consists of four input JSON files as described below. Every invoca-
tion of the interpreter to execute a transition must be provided with these four JSON inputs:

./scilla-runner -init init.json -istate input_state.json -iblockchain input_
→˓blockchain.json -imessage input_message.json -o output.json -i input.scilla

The interpreter executable can be run either to create a contract (denoted CreateContract) or to invoke a transition
in a contract (InvokeContract). Depending on which of these two, some of the arguments will be absent. The table
below outlays the arguments that should be present in each of these two cases. A CreateContract is distinguished
from an InvokeContract, based on the presence of input_message.json and input_state.json. If
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these arguments are absent, then the interpreter will evaluate it as a CreateContract. Else, it will treat it as an
InvokeContract. Note that for CreateContract, the interpreter only performs basic checks such as matching
the contract’s immutable parameters with init.json and whether the contract definition is free of syntax errors.

Present
Input Description CreateContract InvokeContract
init.json Immutable contract parameters Yes Yes
input_state.json Mutable contract state No Yes
input_blockchain.json Blockchain state Yes Yes
input_message.json Transition and parameters No Yes
output.json Output Yes Yes
input.scilla Input contract Yes Yes

In addition to the command line arguments provided above, the interpreter also expects a mandatory -gaslimit
X argument (where X is a positive integer value). If the contract or library module imports other libraries (including
the standard library), a -libdir option must be provided, with a list of directories (in the standard PATH format) as the
argument, indicating directories to be searched for for finding the libraries.

3.8.2 Initializing the Immutable State

init.json defines the values of the immutable parameters of a contract. It does not change between invocations.
The JSON is an array of objects, each of which contains the following fields:

Field Description
vname Name of the immutable contract parameter
type Type of the immutable contract parameter
value Value of the immutable contract parameter

init.json must specify _scilla_version with type Uint32, specifying a value that is the same as
specified in the contract’s source. Additionally, the blockchain will provide two implicit contract parameters
_this_address, a ByStr20 value denoting the address of the contract itself, and _creation_block, a BNum
value denoting the block in which the contract is / was created. While working with the offline interpreter, you may
need to provide these values in the init.json yourself.

Example 1

For the HelloWorld.scilla contract fragment given below, we have only one immutable parameter owner.

contract HelloWorld
(* Immutable parameters *)
(owner: ByStr20)

A sample init.json for this contract will look like the following:

[
{

"vname" : "_scilla_version",
"type" : "Uint32",
"value" : "0"

},
{

"vname" : "owner",

(continues on next page)
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"type" : "ByStr20",
"value" : "0x1234567890123456789012345678901234567890"

},
{

"vname" : "_this_address",
"type" : "ByStr20",
"value" : "0xabfeccdc9012345678901234567890f777567890"

},
{

"vname" : "_creation_block",
"type" : "BNum",
"value" : "1"

}
]

Example 2

For the Crowdfunding.scilla contract fragment given below, we have three immutable parameters owner,
max_block and goal.

contract Crowdfunding
(* Immutable parameters *)
(owner : ByStr20,
max_block : BNum,
goal : UInt128)

A sample init.json for this contract will look like the following:

[
{

"vname" : "_scilla_version",
"type" : "Uint32",
"value" : "0"

},
{

"vname" : "owner",
"type" : "ByStr20",
"value" : "0x1234567890123456789012345678901234567890"

},
{

"vname" : "max_block",
"type" : "BNum" ,
"value" : "199"

},
{

"vname" : "_this_address",
"type" : "ByStr20",
"value" : "0xabfeccdc9012345678901234567890f777567890"

},
{

"vname" : "goal",
"type" : "Uint128",
"value" : "500000000000000"

},
{

(continues on next page)
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"vname" : "_creation_block",
"type" : "BNum",
"value" : "1"

}
]

Example 3: Using Address Types

Whenever a contract has an immutable parameter of an address type, the type ByStr20 must be used in the to
initialise the parameter.

For the SimpleExchange we have a single the immutable parameter, which has an address type:

contract SimpleExchange
(

initial_admin : ByStr20 with end
)

The JSON entry for the initial_admin parameter must use the type ByStr20 rather than the type ByStr20
with end, so an example init.json for this contract could like the following:

[
{

"vname" : "_scilla_version",
"type" : "Uint32",
"value" : "0"

},
{

"vname" : "_this_address",
"type" : "ByStr20",
"value" : "0xabfeccdc9012345678901234567890f777567890"

},
{

"vname" : "_creation_block",
"type" : "BNum",
"value" : "1"

},
{

"vname" : "initial_admin",
"type" : "ByStr20",
"value" : "0x1234567890123456789012345678901234567890"

}
]

3.8.3 Input Blockchain State

input_blockchain.json feeds the current blockchain state to the interpreter. It is similar to init.json,
except that it is a fixed size array of objects, where each object has vname fields only from a predetermined set (which
correspond to actual blockchain state variables).

Permitted JSON fields: At the moment, the only blockchain value that is exposed to contracts is the current
BLOCKNUMBER.
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[
{

"vname" : "BLOCKNUMBER",
"type" : "BNum",
"value" : "3265"

}
]

3.8.4 Input Message

input_message.json contains the information required to invoke a transition. The json is an array containing
the following four objects:

Field Description
_tag Transition to be invoked
_amount Number of QA to be transferred
_sender Address of the invoker (in a chain call, this is the immediate caller)
_origin Address from which the transaction originated
params An array of parameter objects

All the four fields are mandatory. params can be empty if the transition takes no parameters.

The params array is encoded similar to how init.json is encoded, with each parameter specifying the (vname,
type, value) that has to be passed to the transition that is being invoked.

Example 1

For the following transition:

transition SayHello()

an example input_message.json is given below:

{
"_tag" : "SayHello",
"_amount" : "0",
"_sender" : "0x1234567890123456789012345678901234567890",
"_origin" : "0x1234567890123456789012345678901234567890",
"params" : []

}

Example 2

For the following transition:

transition TransferFrom (from : ByStr20, to : ByStr20, tokens : Uint128)

an example input_message.json is given below:
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{
"_tag" : "TransferFrom",
"_amount" : "0",
"_sender" : "0x64345678901234567890123456789012345678cd",
"_origin" : "0x64345678901234567890123456789012345678cd",
"params" : [
{

"vname" : "from",
"type" : "ByStr20",
"value" : "0x1234567890123456789012345678901234567890"

},
{

"vname" : "to",
"type" : "ByStr20",
"value" : "0x78345678901234567890123456789012345678cd"

},
{

"vname" : "tokens",
"type" : "Uint128",
"value" : "500000000000000"

}
]

}

Example 3: Using user-defined types

Note: Due to a bug in the Scilla implementation the information in this section is only valid from Scilla version 0.10.0
and forwards. Contracts written in Scilla versions prior to 0.10.0 and which exploit this bug will have to be rewritten
and redeployed, as they will no longer work from version 0.10.0 and onwards.

When passing a value of user-defined type through the interpreter interface, the json structure is identical to the one
described in the previous example. However, in the interpreter interface all types must be fully qualified, which is
defined as follows:

• For a user-defined type T defined in a module deployed at address A, the fully qualified name is A.T.

• For a user-defined constructor C defined in a module deployed at address A, the fully qualified name is A.C.

Note: For the purposes of offline development the address of a module is defined as the module’s filename, without
file extension. That is, if a contract defines a type T with a constructor C in a file F.scilla, then the fully qualified
name of the type is F.T, and the fully qualified name of the constructor is F.C.

As an example consider a contract that implements a simple board game. The contract might define a type
Direction and a transition MoveAction as follows:

type Direction =
| East
| South
| West
| North

...

(continues on next page)
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transition MoveAction (dir : Direction, spaces : Uint32)
...

Say that the contract has been deployed at address 0x1234567890123456789012345678906784567890.
To invoke the transition with parameters East and 2, use the type name
0x1234567890123456789012345678906784567890.Direction and the constructor name
0x1234567890123456789012345678906784567890.East in the message json:

{
"_tag": "MoveAction",
"_amount": "0",
"_sender" : "0x64345678901234567890123456789012345678cd",
"_origin" : "0x64345678901234567890123456789012345678cd",
"params": [

{
"vname" : "dir",
"type" : "0x1234567890123456789012345678906784567890.Direction",
"value" :
{

"constructor" : "0x1234567890123456789012345678906784567890.East",
"argtypes" : [],
"arguments" : []

}
},
{

"vname" : "spaces",
"type" : "Uint32",
"value" : "2"

}
]

}

If a contract has immutable fields of user-defined types, then the fields must also be initialised using fully qualified
names in the associated init.json.

Example 4: Using Address Types

When passing an address value the type ByStr20 must be used. It is not possible to use address types (ByStr20
with ... end) in messages.

This means that for the following transition

transition ListToken(
token_code : String,
new_token : ByStr20 with contract field allowances : Map ByStr20 (Map ByStr20

→˓Uint128) end
)

the input_message.json must use the type ByStr20 for the new_token parameter, e.g., as follows:

{
"_tag" : "ListToken",
"_amount" : "0",
"_sender" : "0x64345678901234567890123456789012345678cd",
"_origin" : "0x64345678901234567890123456789012345678cd",

(continues on next page)
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"params" : [
{

"vname" : "token_code",
"type" : "String",
"value" : "XYZ"

},
{

"vname" : "new_token",
"type" : "ByStr20",
"value" : "0x78345678901234567890123456789012345678cd"

}
]

}

3.8.5 Interpreter Output

The interpreter will return a JSON object (output.json) with the following fields:

Field Description
scilla_major_version The major version of the Scilla language of this contract.
gas_remaining The remaining gas after invoking or deploying a contract.
_accepted Whether the incoming QA have been accepted (Either "true" or "false")
message The message to be sent to another contract/non-contract account, if any.
states An array of objects that form the new contract state
events An array of events emitted by the transition and the procedures it invoked.

• message is a JSON object with a similar format to input_message.json, except that it has a
_recipient field instead of the _sender field. The fields in message are given below:

Field Description
_tag Transition to be invoked
_amount Number of QA to be transferred
_recipient Address of the recipient
params An array of parameter objects to be passed

The params array is encoded similar to how init.json is encoded, with each parameter specifying the
(vname, type, value) that has to be passed to the transition that is being invoked.

• states is an array of objects that represents the mutable state of the contract. Each entry of the states array
also specifies (vname, type, value).

• events is an array of objects that represents the events emitted by the transition. The fields in each object in
the events array are given below:

Field Description
_eventname The name of the event
params An array of additional event fields

The params array is encoded similar to how init.json is encoded, with each parameter specifying the
(vname, type, value) of each event field.
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Example 1

An example of the output generated by Crowdfunding.scilla is given below. The example also shows the
format for maps in contract states.

{
"scilla_major_version": "0",
"gas_remaining": "7365",
"_accepted": "false",
"message": {
"_tag": "",
"_amount": "100000000000000",
"_recipient": "0x12345678901234567890123456789012345678ab",
"params": []

},
"states": [
{ "vname": "_balance", "type": "Uint128", "value": "300000000000000" },
{

"vname": "backers",
"type": "Map (ByStr20) (Uint128)",
"value": [

{ "key": "0x12345678901234567890123456789012345678cd", "val": "200000000000000
→˓" },

{ "key": "0x123456789012345678901234567890123456abcd", "val": "100000000000000
→˓" }

]
},
{

"vname": "funded",
"type": "Bool",
"value": { "constructor": "False", "argtypes": [], "arguments": [] }

}
],
"events": [
{

"_eventname": "ClaimBackSuccess",
"params": [

{
"vname": "caller",
"type": "ByStr20",
"value": "0x12345678901234567890123456789012345678ab"

},
{ "vname": "amount", "type": "Uint128", "value": "100000000000000" },
{ "vname": "code", "type": "Int32", "value": "9" }

]
}

]
}

Example 2

For values of an ADT type, the value field contains three subfields:

• constructor: The name of the constructor used to construct the value.

• argtypes: An array of type instantiations. For the List and Option types, this array will contain one type,
indicating the type of the list elements or the optional value, respectively. For the Pair type, the array will
contain two types, indicating the types of the two values in the pair. For all other ADTs, the array will be empty.
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• arguments: The arguments to the constructor.

The following example shows how values of the List and Option types are represented in the output json:

{
"scilla_major_version": "0",
"gas_remaining": "7733",
"_accepted": "false",
"message": null,
"states": [
{ "vname": "_balance", "type": "Uint128", "value": "0" },
{

"vname": "gpair",
"type": "Pair (List (Int64)) (Option (Bool))",
"value": {

"constructor": "Pair",
"argtypes": [ "List (Int64)", "Option (Bool)" ],
"arguments": [
[],
{ "constructor": "None", "argtypes": [ "Bool" ], "arguments": [] }

]
}

},
{ "vname": "llist", "type": "List (List (Int64))", "value": [] },
{ "vname": "plist", "type": "List (Option (Int32))", "value": [] },
{

"vname": "gnat",
"type": "Nat",
"value": { "constructor": "Zero", "argtypes": [], "arguments": [] }

},
{

"vname": "gmap",
"type": "Map (ByStr20) (Pair (Int32) (Int32))",
"value": [

{
"key": "0x12345678901234567890123456789012345678ab",
"val": {
"constructor": "Pair",
"argtypes": [ "Int32", "Int32" ],
"arguments": [ "1", "2" ]

}
}

]
}

],
"events": []

}

3.8.6 Input Mutable Contract State

input_state.json contains the current value of mutable state variables. It has the same forms as the states
field in output.json. An example of input_state.json for Crowdfunding.scilla is given below.

[
{
"vname": "backers",
"type": "Map (ByStr20) (Uint128)",

(continues on next page)
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(continued from previous page)

"value": [
{

"key": "0x12345678901234567890123456789012345678cd",
"val": "200000000000000"

},
{

"key": "0x12345678901234567890123456789012345678ab",
"val": "100000000000000"

}
]

},
{
"vname": "funded",
"type": "Bool",
"value": {
"constructor": "False",
"argtypes": [],
"arguments": []

}
},
{
"vname": "_balance",
"type": "Uint128",
"value": "300000000000000"

}
]

3.9 Contact

Questions? Talk to us on Discord.
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https://discordapp.com/invite/mWp9HdR/
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